
1.2

Public Key Cryptography

Contents

1 Introduction 1

2 Prime Factorisation 2

3 Euclid’s Algorithm 5

4 RSA 6

A Programs 8
A.1 Documentation . 8
A.2 PrimeFactor.py . 9
A.3 Euclid.py . 10
A.4 RSA.py . 11
A.5 Q9.py . 11

1 Introduction

This project is programmed in Python 3.4. Consult section A for program documentation, listings
and information on the structure of the programming for this project. The graph and flowchart
are produced using Microsoft Excel 2010. This report is written in LATEX 2ε.

Notation. x, y ∈ Z, a, b, n ∈ N.

P := {t ∈ Z : t is prime.}
[x, y] := {t ∈ Z : x ≤ t ≤ y}
a⊥ b :⇐⇒ hcf(a, b) = 1

x ≡n y :⇐⇒ x ≡ y (modulo n)

1

2 Prime Factorisation

Q1. The function Prime(n) (n ∈ N) uses trial division with the standard modification of only
dividing by every number up to and including b

√
nc. If a proper factor r greater than b

√
nc exists,

there exists a proper factor less than or equal to b
√
nc, namely n

r
, whose discovery would have

already revealed that n is not prime.

Sample output of Prime(n).

>>> for i in range (11,40,2) :

print(str(i)+’, ’+str(Prime(i)

))

11, prime

13, prime

15, non-prime

17, prime

19, prime

21, non-prime

23, prime

25, non-prime

27, non-prime

29, prime

31, prime

33, non-prime

35, non-prime

37, prime

39, non-prime

Q2. Factor(n) returns the prime factorisation of n ∈ N.

Sample output of Factor(n).

>>> for i in range (11,40,2):

print(str(i)+’, ’+str(Factor(i

)))

11, [11]

13, [13]

15, [3, 5]

17, [17]

19, [19]

21, [3, 7]

23, [23]

25, [5, 5]

27, [3, 3, 3]

29, [29]

31, [31]

33, [3, 11]

35, [5, 7]

37, [37]

39, [3, 13]

>>> Factor (144)

[2, 2, 2, 2, 3, 3]

>>> Factor (13*19*31)

[13, 19, 31]

>>> Factor (2**3*3**4*5**2)

[2, 2, 2, 3, 3, 3, 3, 5, 5]

Flowchart for Factor(n). An arithmetic operation is henceforth defined1 as a single addition,
subtraction, multiplication, division (simultaneously quotient and remainder), or square root. In
figure 1, a step represented with a blue border requires a single arithmetic operation.

1This weighting doesn’t correlate well with the actual amount of time required by a computer to perform these
operations, but simplifies the analysis of complexity.

2

Figure 1: Factor(n) algorithm flowchart.

The function FactorTrace(n) counts arithmetic operations as detailed in the flowchart. Denot-
ing this number as χ(n),

χ(n) = 1 + 3a+ 2b

where a and b are the number of successes and failures of the n ≡r 0 trial, respectively. This will
be used to determine the complexity of the algorithm.

An upper bound on χ(n) can be determined by comparing the values of r,m, n at each step
to their initial values, denoted r0,m0, n0 respectively so that r0 = 2. At each n ≡r 0 trial, there is
either a success or a failure. Denoting the next value of each variable with a prime, the following
occurs at each step:

Success : r′ = r n′ =
n

r
≤ n

2
Failure : r′ = r + 1 n′ = n

Thus, successive values of r form an increasing sequence and those of n consequently form a
decreasing sequence (noting that r ≥ 2 always). Moreover, each step modifies either r or (n and
m) only. Hence, r = r0 + b and n ≤ 2−an0 (the latter by induction).

Now, the algorithm terminates when r > m, which is guaranteed to occur if either n < r0 or
m0 < r (noting that n < r0 =⇒ m < r0 – a simplification). Denoting the number of successes
and failures up to the current point as α and β respectively, this means:

m = b
√
n0c < r = 2 + β ⇐⇒ β > b

√
n0c − 2 >

√
n0 − 3

n ≤ 2−αn0 < r0 = 2 ⇐⇒ α > log2 (n0) + 1

This yields the following upper bounds for a and b, which are the lowest values of α and β satisfying
termination:

b ≤
√
n0 − 2

a ≤ log2 (n0) + 2 = 2 log2 (
√
n0) + 2 ≤ 2

√
n0 + 2

3

Figure 2: χ(n) compared to the putative upper bound 2b
√
nc.

Therefore, ∀n ∈ N,
χ(n) = 1 + 3a+ 2b ≤ 8

√
n+ 3

A lower bound can be attained by noting that

∀p ∈ P χ(p) = 2b√pc − 1

This is because the factorisation of a prime number consists of m − 1 failures and nothing else
(noting that m = b

√
nc). There are infinitely many primes, so, in this case, the algorithm has

complexity Θ (
√
n). This matches the upper bound, so the worst-case complexity is Θ (

√
n).

More precisely, the worst-case complexity appears to be asymptotic to 2
√
n. A stricter lower

bound of 2b
√
nc arises from considering numbers of the form n = p2, p ∈ P (noting that there are

m − 2 failures and 1 success; these numbers also occur infinitely often). Above n > 48, however,
checking as far as n = 5000, χ(n) is bounded above by 2b

√
nc (see figure 2).2

The worst-case complexity of both this algorithm and the trial division algorithm (counting
as set out above) is thus Θ (

√
n). Trial division requires 2b√pc − 1 operations for p ∈ P, like

the former, and less for p /∈ P. Factorisation continues after it has found the first factor, unlike
the latter, but on account of reducing n greatly by division, its time-complexity is still Θ (

√
n).

Indeed, heuristically, the primes are virtually the worst case for the factorisation algorithm.

2This deduction is made from the raw data output by running FactorTrace(n) on n ∈ [1, 5000]. I include figure
2 purely for interest.

4

3 Euclid’s Algorithm

Q3. The highest common factor of each pair of numbers is the LHS of the following equations.

>>> EuclidLC (2077945721 ,2659982993)

’8609 = 41467(2659982993) + -53082(2077945721) ’

>>> EuclidLC (462094817 ,1547231131)

’3407 = -22943(1547231131) + 76820(462094817) ’

>>> EuclidLC (112176517033 ,57479712010)

’19397 = -283711(112176517033) + 553686(57479712010) ’

>>> EuclidLC (919805092492 ,543225077822)

’2 = 40786982269(919805092492) + -69061749043(543225077822) ’

Q4. This section explains the method used by Cong(a,b,n) to solve ax ≡n b for x ∈ Z, with
n ∈ N, a, b ∈ Z.3

Let h = hcf(a, n). Then by Bezout’s lemma,

(∃x ∈ Z : ax ≡n b) ⇐⇒ (∃x, y ∈ Z : ax+ ny = b) ⇐⇒ h|b

Thus, there is a solution iff h|b.
If so, let α = a

h
, β = b

h
, ν = n

h
so that α, β ∈ N0, ν ∈ N (note h > 0 as n 6= 0). Then

∀x ∈ Z ax ≡n b ⇐⇒ αx ≡ν β. hcf(α, ν) = 1, so α is invertible modulo ν. By Euclid’s
algorithm, we can find s, t ∈ Z : h = sa + tn,4 which implies 1 = sα + tν, whence 1 ≡ν sα, so
α−1 ≡ν s. Therefore, ∀x ∈ Z

ax ≡n b ⇐⇒ αx ≡ν β ⇐⇒ x ≡ν α−1β =
sb

h

Q5. There are no solutions iff hcf(a, n) 6 |b.

>>> Congo (718141 ,20559 ,932191)

’x = 559615 (mod 932191) ’

>>> Congo (718141 ,20559 ,968280)

’No solution.’

>>> Congo (718141 ,20559 ,999915)

’x = 2814 (mod 11235) ’

3This method works for all a ∈ Z, but Cong(a,b,n) sets a to its residue modulo n (which yields an equivalent
problem) before implementing it, to simplify the programming.

4Running Euclid’s algorithm on a, n rather than α, ν saves the program from having to run the algorithm twice.

5

4 RSA

Q6.

Complexity of finding p and q. p and q are determined by applying trial division to n. This is
done using FactorOnce(n); as n is a product of two primes, the output is its prime factorisation.

The algorithm requires exactly 2 min(p, q) − 2 ≤ 2
√
n arithmetic operations5, and thus is

asymptotically dominated by 2
√
n. The worst-case complexity is in fact asymptotic to 2

√
n; this

follows, for instance, from the fact that there exists k ∈ N such that there are infinitely-many pairs
of primes differing by k.6 Choosing successively further prime pairs, min(p,q)√

n
→ 0, so 2min(p,q)−2

2
√
n

→ 0.

Complexity of finding d. d is returned by Key(n,e). Once φ(n) has been determined, the
algorithm requires max(3η− 1, 1) arithmetic operations, where η = len(r)− 2 (in the notation of
the program) is the number of divisions required by Euclid’s algorithm to find hcf(e, φ(n)).7 Hence,
determining its complexity is tantamount to determining η. In accordance with the convention of
the program, the remainder list is denoted (ri)

i=η+1
i=0 , so that rη = hcf(e, φ(n)) = 1 and rη+1 = 0.

Upper bound: Suppose e ≥ 1 so that η ≥ 1.8 Let k ∈ [0, η − 1]. rk ≥ rk+1 ≥ rk+2, so qk ≥ 1,
so rk = qkrk+1 + rk+2 ≥ rk+1 + rk+2 ≥ 2rk+2. Hence, by induction, η ∈ 2N =⇒ 2

η
2
−1rη ≤ r2 ≤ r1

and η ∈ 2N− 1 =⇒ 2
η−1
2 rη ≤ r1. Therefore, η ≤ 2 log2

(
r1
rη

)
+ 2 = 2 log2(e) + 2.

Lower bound: For the worst case, consider the Fibonacci numbers {Fr}r∈N0 .
9. These satisfy

two important properties:

• ∀k ∈ N0 2 log3 (Fk) ≤ k. This is because ∀t ∈ N0 Ft+2 = 2Ft + Ft−1 ≤ 3Ft, whence

inductively k ∈ 2N0 =⇒ Fk ≤ 3
r
2F0 = 3

r
2 and k ∈ 2N− 1 =⇒ Fk ≤ 3

r−1
2 F1 = 3

r−1
2 . Thus,

Fk ≤ 3
r
2 , whence 2 log3 (Fk) ≤ k, giving the result.

• ∀k ∈ N0 The number of divisions performed by Euclid’s algorithm on (Fk, Fk+1) is k. This
is because ∀t ∈ N0 2Ft ≥ Ft+1, so every division returns a quotient of 1, and the preceding
Fibonacci number as the remainder (until the last step, which outputs a remainder of 0, the
penultimate step having given 1).

Now, set k = max{t ∈ N : t ≤ 2 log3(e)} (with e ≥ 2)8. Then Fk ≤ 3
k
2 ≤ e ≤ 3

k+1
2 . Fk ≤ e (with

Fk+1) thus yields a case of k divisions, so the worst-case complexity is greater than or equal to
k ≥ 2 log3(e)− 1.

The Fibonacci numbers diverge to infinity, and successive Fibonacci numbers are coprime,
but it is unknown10 if there are infinitely many Fibonacci numbers of the form (p − 1)(q − 1),
p, q ∈ P. If so, these could be taken as φ(n) and the preceding Fibonacci number as e, to yield
a case with the required worst-case complexity. However, this analysis does prove, noting that
log(x) ≡ log(2) log2(x) ≡ log(3) log3(x) on (0,∞), that the worst-case complexity of Euclid’s
algorithm in general (counting in divisions) is Θ (log(n)), where n is the lower of the inputs, and
the complexity of Key(n,e) (counting in arithmetic operations) is O (log(n)).

5n− 2 failures and 1 success, each costing 2 operations including the test itself.
6This result was proven by Yitang Zhang in 2013. The upper bound on k, initially 70,000,000, has now been

reduced to 246 through an ongoing Polymath project.
7The individual operations are labelled in the program listings.
8These assumptions eliminate the need for special cases and are without loss of generality, as asymptotic be-

haviour for large e, n is being considered.
9Definition: F0 = F1 = 1; ∀r ∈ N0 Fr+2 = Fr+1 + Fr

10To me, at least.

6

Q7. The decryption keys are as follows:

>>> Key (1792393783 ,99833)

1653136833

>>> Key (1837601609 ,50512913)

1062003017

>>> Key

(9996158063509 ,123456715)

9478063366735

>>> Key (1682749591 ,166907411)

78553691

>>> Key (6718172889047 ,901)

141670569661

>>> Key (1617097231 ,34577)

338486129

Q8. The function Crypt(c,n,d) computes cd (mod n) by iteratively multiplying c, taking the
residue modulo n at each step to minimise the computation time of each multiplication. As it is
simply a modular exponentiation function (also usable to encrypt), setting d = e and c = cd yields
m; this can be used to check the solution. For example, with n = 77, e = 17⊥ φ(n) = 60, c = 4:

>>> Key (77 ,17)

53

>>> Crypt (4,77,53)

9

>>> Crypt (9,77,17)

4

The entire algorithm tree is built using integer arithmetic, so there is no possibility of an
inaccurate result, regardless of the size of n.11 The computer may, of course, fail to process the
calculation in an affordable time frame, if n is too large.

Q9. This is the output of the script Q9.py:

>>>

Key: 82393

Message: what did james ellis clifford cocks and malcolm

williamson do first: invent public key cryptography

11Thou shalt not encourage floating-point approximations to integer computations: https://dolphin-emu.org/
blog/2014/03/15/pixel-processing-problems/

7

https://dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/
https://dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/

A Programs

The programs take the form of three modules, providing functions for the three sections, and one
script for Q9. These modules are loaded into the shell via an additional initialisation module
Init.py (which loads all of each module’s functions into the global symbol table), and commands
are then typed into the shell in an interactive session (with output recorded).

A.1 Documentation

This section describes the purpose of the project’s functions, and the inputs for which they are
designed to give valid output. The order they appear in corresponds to the listings.

Prime(n): n ∈ N. Checks if n is prime.

Factor(n): n ∈ N. Returns the prime factorisation of n as a descending list with repeats.

FactorTrace(n): n ∈ N. Returns the number of arithmetic operations required to run Factor(n).

FactorOnce(n): n ∈ N. Returns [r,s], where r is the smallest non-1 factor of n and s is its
complement.

EuclidA(a,b): a, b ∈ N0. Returns (r,q), where r is the list of remainders (preceded by max(a, b),
min(a, b)) and q is the list of quotients obtained from the divisions executed by Euclid’s algorithm
running on a, b.

EuclidB(a,b): a, b ∈ N0. Returns [c,y,x], where c = ymax(a, b) + xmin(a, b), as obtained by
back-substitution using Euclid’s algorithm on a, b.

EuclidHcf(a,b): a, b ∈ N0. Returns hcf(a, b),12 from the remainder list of Euclid’s algorithm.

EuclidLC(a,b): a, b ∈ N0. Returns a string representation of EuclidB(a,b).

Cong(a,b,n): n ∈ N, a, b ∈ Z. Returns [r,m], where x ≡m r is the solution to the congruence
ax ≡n b, where the solution exists.

Congo(a,b,n): n ∈ N, a, b ∈ Z. Returns a string representation of Cong(a,b,n).

Tot(n): n ∈ N. Returns φ(n) if n is a product of two distinct prime numbers.

Key(n,e): n ∈ N, e ∈ {x ∈ [0, n − 1] : x ⊥ e}. Returns Cong(e, 1, Tot(n))[0]. It is a rewrite
of this function, optimised to be used on the restricted set of inputs it allows.

Crypt(c,d,n): c, d ∈ N0, n ∈ N. Returns the residue of cd modulo n.12

12Convenient convention: hcf(0, 0) = 0; 00 = 1

8

A.2 PrimeFactor.py

import math

def Prime(n):

if n == 1:

return ’non-prime’

m = math.floor(math.sqrt(n))

for r in range(2, m+1):

if n % r == 0:

return ’non-prime’

return ’prime ’

def Factor(n):

x = []

r = 2

m = math.floor(math.sqrt(n))

while r <= m:

if n % r == 0:

x.append(r)

n = n // r

m = math.floor(math.sqrt(n))

else:

r += 1

if n != 1:

x.append(n)

return x

def FactorTrace(n):

r = 2

m = math.floor(math.sqrt(n))

y = 1

while r <= m:

if n % r == 0:

n = n // r

m = math.floor(math.sqrt(n))

y += 3

else:

r += 1

y += 2

return y

def FactorOnce(n):

for r in range(2, n+1):

if n % r == 0:

return [r, n//r]

return []

9

A.3 Euclid.py

def EuclidA(a,b):

r = [max(a,b),min(a,b)] # the remainder list

q = [] # the quotient list

while r[-1] != 0:

t = divmod(r[-2],r[-1])

r.append(t[1])

q.append(t[0])

return (r,q) # len(r)-2 iterations , 1 operation each

def EuclidB(a,b):

(a,b) = (max(a,b),min(a,b))

(r,q) = EuclidA(a,b)

(x,y) = (1,0)

Now , r[-2] == x*r[-2] + y*r[-3]

for i in range(len(r)-4,-1,-1):

(x,y) = (y - x*q[i],x)

Now , r[-2] == x*r[i+1] + y*r[i]

return (r[-2],y,x) # max(len(r)-3,0) iterations , 2

operations each

def EuclidHcf(a,b):

return EuclidA(a,b)[0][-2]

def EuclidLC(a,b):

(c,y,x) = EuclidB(a,b)

(c,y,x) = (str(c),str(y),str(x))

(a,b) = (str(max(a,b)),str(min(a,b)))

return c + ’ = ’ + y + ’(’ + a + ’) + ’ + x + ’(’ + b + ’)’

def Cong(a,b,n):

a = a % n

e = EuclidB(a,n)

h = e[0]

if b % h != 0:

return ’No solution.’

b = b // h

n = n // h

return [(e[2] * b) % n, n]

def Congo(a,b,n):

c = Cong(a,b,n)

if c == ’No solution.’:

return c

return ’x = ’ + str(c[0]) + ’ (mod ’ + str(c[1]) + ’)’

10

A.4 RSA.py

from PrimeFactor import *

from Euclid import *

def Tot(n):

x = Factor(n)

if len(x) != 2 or x[0] == x[1]:

return ’Input must be a product of two distinct primes.’

return (x[0] - 1) * (x[1] - 1)

def Key(n,e):

t = Tot(n)

return (EuclidB(e,t)[2]) %t # 1 + [EuclidB(e,t)] operations

def Crypt(c,n,d):

r = 1

for i in range(1,d+1):

r = (r * c) % n

return r

A.5 Q9.py

from RSA import *

x = [569010 , 157904 , 679003 , 511858 , 64330, 227775 , 798880 ,

345152 , 334332 , 594524 , 917269 , 866647 , 92778, 834013 , 372172 ,

558357 , 210768 , 528931 , 818047 , 587250 , 357542 , 437704 ,

968899 , 546508 , 538213 , 130764 , 589138 , 331077 , 305125 ,

255352 , 545397 , 311491 , 725411]

n = 998191

e = 123457

d = Key(n,e)

y = []

for i in range(len(x)):

y.append(Crypt(x[i],n,d))

s = ’’

for i in range(len(y)):

q = str(y[i])

s = s + (’0’*(6-len(q))) + str(y[i])

t = ’’

for i in range(len(s)//2):

(a,b)=(s[2*i],s[(2*i)+1])

t = t + " abcdefghijklmnopqrstuvwxyz .:’"[int(a + b)]

print(’Key: ’ + str(d))

print(’Message: ’ + t)

11

	Introduction
	Prime Factorisation
	Euclid's Algorithm
	RSA
	Programs
	Documentation
	PrimeFactor.py
	Euclid.py
	RSA.py
	Q9.py

