
15.10

Continued Fraction Factorisation

Contents

1 Factor Bases 1

2 Continued Fractions 2

3 Pell’s Equation 6

4 Continued Fraction Factorisation 12

A Programs 16
A.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.2 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.3 CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.4 Pell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.5 Ker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.6 CFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Introduction

This project is programmed in Python 3.5. Consult section A for program documentation,
listings and information on the structure of the programming for the project, as appropriate.
This report is written in LATEX 2ε.



1 Factor Bases

Q1. The function fb(B, n) tests if n ∈ N0 is smooth over B ∈ P∗ by trial division, returning
a prime factorisation if so and 0 if not. Some sample output:

00, 0

01, []

02, [2]

03, [3]

04, [2, 2]

05, [5]

06, [2, 3]

07, 0

08, [2, 2, 2]

09, [3, 3]

10, [2, 5]

11, 0

12, [2, 2, 3]

13, 0

14, 0

15, [3, 5]

16, [2, 2, 2, 2]

17, 0

18, [2, 3, 3]

19, 0

20, [2, 2, 5]

21, 0

22, 0

23, 0

24, [2, 2, 2, 3]

25, [5, 5]

26, 0

27, [3, 3, 3]

28, 0

29, 0

30, [2, 3, 5]

31, 0

32, [2, 2, 2, 2, 2]

33, 0

34, 0

35, 0

36, [2, 2, 3, 3]

37, 0

38, 0

39, 0

40, [2, 2, 2, 5]

41, 0

42, 0

43, 0

44, 0

45, [3, 3, 5]

46, 0

47, 0

48, [2, 2, 2, 2, 3]

49, 0

50, [2, 5, 5]

Q1a

By generating a large sample of random d-digit numbers, we can approximate the probability
that a d-digit number is B-smooth, as below:

01, 1.0

02, 0.8891655

03, 0.4878505

04, 0.21479025

05, 0.07941875

06, 0.02574875

07, 0.0074845

08, 0.00202425

09, 0.0005295

10, 0.00011775

11, 2.95e-05

12, 6.5e-06

13, 1e-06

14, 2.5e-07

15, 0.0

16, 0.0

Q1b

By running this random script a few times, I concluded that these numbers are acceptable,
though imperfect, estimates to 3 decimal places (and so not reliable beyond d = 9).

1



2 Continued Fractions

Q2: Algorithm. Let N ∈ N0, d = b
√
Nc. If N is square, d =

√
N , so the continued fraction

of
√
N is (a0) = (

√
N). For the rest of this chapter, assume it’s not; then

√
N is irrational,

so its continued fraction is infinite. Denote its partial quotients, remainders and convergents
by (an), (xn), (pn), (qn) (n ∈ N0) respectively. To make its computation amenable to integer
arithmetic, we introduce two new sequences of integers. Let n ∈ N0. Then

√
N =

xnpn−1 + pn−2
xnqn−1 + qn−2

Rearranging and rationalising the denominator,1

xn = −(qn−2
√
N − pn−2)(qn−1

√
N + pn−1)

Nq2n−1 − p2n−1

Expanding with the identity pkqk−1 − pk−1qk = (−1)k+1 (∀k ≥ −1) gives xn =
√
N+rn
sn

, where

rn = (−1)n(Nqn−1qn−2 − pn−1pn−2)
sn = (−1)n(p2n−1 −Nq2n−1)

so that rn, sn ∈ Z. Moreover, since p2k
q2k
↑
√
N and p2k+1

q2k+1
↓
√
N as k →∞ in N0 (both strictly),

and since pn, qn ≥ 1 (as a0 = d ≥ 1, by induction), it follows that, if n ≥ 1,

n− 1 is even =⇒ pn−1
qn−1

<
√
N =⇒ p2n−1 −Nq2n−1 < 0 =⇒ sn > 0

n− 1 is odd =⇒ pn−1
qn−1

>
√
N =⇒ p2n−1 −Nq2n−1 > 0 =⇒ sn > 0

and if n = 0, sn = 1 > 0. Therefore, in all cases, sn ∈ N.
These sequences are not useful in their current form, since they require convergents pn, qn

to be computed, which itself requires the continued fraction to have been computed some other
way. Fortunately, the sequences have an integer-only recursive characterisation.

Lemma. ∀n ∈ N0

r0 = 0 s0 = 1 a0 = d

rn+1 = ansn − rn sn+1 =
N − r2n+1

sn
an+1 =

⌊
d+ rn+1

sn+1

⌋
Proof. By induction on n ∈ N0. n = 0 is immediate; suppose truth for n− 1 (n ∈ N). Then

ansn − rn = (−1)n
(
anp

2
n−1 − anNq2n−1 − (Nqn−1qn−2 − pn−1pn−2)

)
= (−1)n

(
pn−1(anpn−1 + pn−2)−Nqn−1(anqn−1 + qn−2)

)
= (−1)n+1(Nqnqn−1 − pnpn−1) = rn+1

r2n+1 + snsn+1 = (Nqnqn−1 − pnpn−1)(Nqnqn−1 − pnpn−1)− (p2n−1 −Nq2n−1)(p2n −Nq2n)

= −2Npnpn−1qnqn−1 +N(p2nq
2
n−1 + q2np

2
n−1)

= N(pnqn−1 − qnpn−1)2 = N(−1)2(n+1) = N

an+1 = bxn+1c = b(
√
N + rn+1)/sn+1c = b(b

√
Nc+ rn+1)/sn+1c

where the last step uses easy facts about the floor function,2 namely ∀m ∈ Z ∀n ∈ N ∀x ∈ R

bx+mc = bxc+m bx/nc = bbxc/nc
1Noting that qn−1

√
N ± pn−1 6= 0 since

√
N is irrational and qn−1 = 0 =⇒ n− 1 = −1 =⇒ pn−1 = 1.

2This is why we require that ∀n ∈ N0 sn > 0.

2



The result of all that is an algorithm for computing partial continued fractions of
√
N ,

n ∈ N0, using only integer arithmetic, implemented as the function cf (which computes (ai)
k
i=0,

(ri)
k
i=0, (si)

k
i=0 for

√
N).3 Both of the specified division operations can be implemented as floor

division,4 and computing d = b
√
Nc can be done by testing squares (see the function rf).

Q2: Empirics and Theory. The output of cf for some small N with k = 17 is listed below.

2; a: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

r: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

s: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

3; a: 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1

r: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

s: 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

5; a: 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

r: 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

s: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

6; a: 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2

r: 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

s: 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

7; a: 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1

r: 0, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2

s: 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3

8; a: 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1

r: 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

s: 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4

13; a: 3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1

r: 0, 3, 1, 2, 1, 3, 3, 1, 2, 1, 3, 3, 1, 2, 1, 3, 3, 1

s: 1, 4, 3, 3, 4, 1, 4, 3, 3, 4, 1, 4, 3, 3, 4, 1, 4, 3

14; a: 3, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1

r: 0, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3

s: 1, 5, 2, 5, 1, 5, 2, 5, 1, 5, 2, 5, 1, 5, 2, 5, 1, 5

15; a: 3, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1

r: 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

s: 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6

19; a: 4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2

r: 0, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 2

s: 1, 3, 5, 2, 5, 3, 1, 3, 5, 2, 5, 3, 1, 3, 5, 2, 5, 3

Q2a

3If n is not square; else, cf computes a0, r0, s0.
4This is real division followed by floor, but is implementable in integers (e.g. by testing products).

3



There is a plethora of patterns visible here. The most striking is the periodicity – eventually,
the (an, rn, sn) triple starts to repeat. By the design of the recursive algorithm, the triple
(an+1, rn+1, sn+1) depends exclusively on (an, rn, sn). Hence, if, for m,n ∈ N0 s.t. m < n,
(an, rn, sn) = (am, rm, sm), then the sequence of triples is periodic from m onwards with period
at most n −m. Thus, to prove eventual periodicity, it suffices to find a single repetition, and
this seems likely to occur because each sequence seems to be bounded by some small number
depending on d = a0. Indeed, these are the maxima of the sequences forN ∈ [10, 24] (computing
101 terms).

N: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

a: 6, 6, 6, 6, 6, 6, 4, 8, 8, 8, 8, 8, 8, 8, 8

r: 3, 3, 3, 3, 3, 3, 0, 4, 4, 4, 4, 4, 4, 4, 4

s: 1, 2, 3, 4, 5, 6, 1, 1, 2, 5, 4, 5, 6, 7, 8

Q2b

The obvious conjecture is this:

Theorem. ∀n ∈ N an ∈ [1, 2d] ∧ rn ∈ [1, d] ∧ sn ∈ [1, 2d]

Proof. an ≥ 1. It was shown earlier that sn ≥ 1. The other bounds on rn and sn can be

established by checking that
√
N−rn
sn

∈ (0, 1) by induction, noting that
√
N+rn
sn

= xn ∈ (1,∞)
and manipulating the resulting inequalities (see the proof of theorem 2.4, Beceanu). Finally,
xn = d+rn

sn
≤ 2d, so an = bxnc ≤ 2d.

Hence, as ∀n ∈ N (rn, sn) ∈ [1, d]× [1, 2d], a repetition in the sequence (rn, sn) must occur

within
∣∣[1, d]× [1, 2d]

∣∣+ 1 = 2d2 + 1 ≤ 2N + 1 terms (excluding the 0th term). an =
⌊
d+rn
sn

⌋
, so

this is a repetition of the entire triple; hence, (an, rn, sn) is periodic with period at most 2N .
This is evidently a very loose bound.5

As an aside, it is easy to check that our upper bounds on the sequences a, r, s are tight.
In the case of rn, this is always the case since r1 = a0s0 − r0 = a0 = d. For the others, we
exhibit an example. In general, for the case N = α2 − 1 (α ≥ 2)6, whence d = α − 1, direct
computation shows that

a = (d, 1, 2d) r = (0, d, d) s = (1, 2d, 1)

Thus, for any d ∈ N, the bounds are attained with N = (d+ 1)2 − 1.
There are many more striking patterns visible in the continued fraction a. For instance,

the termwise maximum of a is empirically attained, and there is a symmetry among the terms.
These patterns are all summarised by the following theorem.

The period of periodic sequence (tn)∞n=0 is the minimal π ∈ N : ∃m ∈ N0 : ∀n ≥ m tn+π = tn.
Let π = πN ∈ N be the period of the continued fraction of

√
N – i.e. the period of (an, rn, sn).

Theorem. a = (d, a1, . . . , aπ) and (a1, . . . , aπ−1) is palindromic (reversion-invariant). Also, π
is the minimum n ∈ N : an = 2d. In particular, π is the period of a.

Proof. (an) is π-periodic, so by theorem 2.5, Beceanu, ∀n ∈ N an+π = an (so a = (a0, a1, . . . , aπ)),
aπ = 2d and (a1, . . . , aπ−1) is palindromic. Let ρ = min{n ∈ N : an = 2d}. S.t.p. π = ρ.

aπ = 2d, so ρ ≤ π. Since aρ = 2d, computation and bounding with the inequalities for
a, r, s show that rρ = d and sρ = 1, whence (aρ+1, rρ+1, sρ+1) = (a1, r1, s1). Thus, (an, rn, sn) is
eventually periodic with period ≤ ρ, so π ≤ ρ.

5N is in fact also a (loose) upper bound (see corollary 2.1, Beceanu). The Beceanu paper is an investigation
into more precise asymptotics for this quantity.

6Hence, N is not square.

4



Remark. As (aπ+1, rπ+1, sπ+1) = (a1, r1, s1), we also have r = (0, r1, . . . , rπ) and s = (1, s1, . . . , sπ).

This lends itself to a simple method of computing a closed-form continued fraction expansion
of a square root of non-square N ∈ N0 – stop when the partial quotient hits double its initial
value.7 This is implemented as cfc(N). Thus, the expansions of N ∈ [0, 50] are presented below.

0: [0]

1: [1]

2: [1, 2]

3: [1, 1, 2]

4: [2]

5: [2, 4]

6: [2, 2, 4]

7: [2, 1, 1, 1, 4]

8: [2, 1, 4]

9: [3]

10: [3, 6]

11: [3, 3, 6]

12: [3, 2, 6]

13: [3, 1, 1, 1, 1, 6]

14: [3, 1, 2, 1, 6]

15: [3, 1, 6]

16: [4]

17: [4, 8]

18: [4, 4, 8]

19: [4, 2, 1, 3, 1, 2, 8]

20: [4, 2, 8]

21: [4, 1, 1, 2, 1, 1, 8]

22: [4, 1, 2, 4, 2, 1, 8]

23: [4, 1, 3, 1, 8]

24: [4, 1, 8]

25: [5]

26: [5, 10]

27: [5, 5, 10]

28: [5, 3, 2, 3, 10]

29: [5, 2, 1, 1, 2, 10]

30: [5, 2, 10]

31: [5, 1, 1, 3, 5, 3, 1, 1, 10]

32: [5, 1, 1, 1, 10]

33: [5, 1, 2, 1, 10]

34: [5, 1, 4, 1, 10]

35: [5, 1, 10]

36: [6]

37: [6, 12]

38: [6, 6, 12]

39: [6, 4, 12]

40: [6, 3, 12]

41: [6, 2, 2, 12]

42: [6, 2, 12]

43: [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12]

44: [6, 1, 1, 1, 2, 1, 1, 1, 12]

45: [6, 1, 2, 2, 2, 1, 12]

46: [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12]

47: [6, 1, 5, 1, 12]

48: [6, 1, 12]

49: [7]

50: [7, 14]

Q2c

7Though, on a computer, it is just as efficient to stop when (rn, sn) = (r1, s1).

5



3 Pell’s Equation

Q3: Observations. As in chapter 2, Pell’s equations are trivial if N ∈ N is a square number.
Let x, y ∈ N0 : x2−Ny2 = ±1.8 Then (x+

√
Ny)(x−

√
Ny) = ±1. But because x±

√
Ny are

integers, we have x+
√
Ny, x−

√
Ny = ±1. In the case of Pell+, x+

√
Ny = x−

√
Ny, so y = 0

and x = 1, this being the only solution. Regarding Pell−, we get x+
√
Ny = −(x−

√
Ny), so

x = 0 and y2 = 1
N

, so N = 1 and y = 1 – i.e. the only solution is (0, 1) if N = 1 and there is
no solution otherwise. These solutions are trivial in the sense that a component is always 0.

Moving swiftly on, let N ∈ N be non-square. We’ll try to find solutions among pairs of
convergents. Here are the values of p2n−Nq2n, with rows corresponding to values ofN (labelled on
the left) and columns to values of n (counting from 0 to k = 14), as computed by PellPQ(N, k).

2: -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1

3: -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2

5: -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1

6: -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2

7: -3, 2, -3, 1, -3, 2, -3, 1, -3, 2, -3, 1, -3, 2, -3

8: -4, 1, -4, 1, -4, 1, -4, 1, -4, 1, -4, 1, -4, 1, -4

13: -4, 3, -3, 4, -1, 4, -3, 3, -4, 1, -4, 3, -3, 4, -1

14: -5, 2, -5, 1, -5, 2, -5, 1, -5, 2, -5, 1, -5, 2, -5

15: -6, 1, -6, 1, -6, 1, -6, 1, -6, 1, -6, 1, -6, 1, -6

19: -3, 5, -2, 5, -3, 1, -3, 5, -2, 5, -3, 1, -3, 5, -2

Q3a

To avoid rounding error when working with p2n and other large numbers in real arithmetic,
we must enforce an upper limit on it, like 1015. This seemingly restricts pn to 107.5 or so.
However, we can recover the original limit by splitting pn into halves w.r.t. its digits (to get
two numbers ≤ 107.5 (left), 107 (right)) and cross-multiplying them to obtain 3 numbers ≤ 1015.
To check that p2n−Nq2n = ±1, having computed 3 numbers apiece for pn, qn, we subtract them
pointwise and check they’re all 0 except at the products of right halves, the only influence on
the units digit, which must be ±1. Alternatively, one could just use integer arithmetic.9

Q3: Theory. This looks promising; there seems to always be a non-trivial solution to Pell+,
and often also to Pell−. The signs of these numbers appear to oppose the parity of n, and there
is periodicity but patterns are hard to spot beyond that. Happily, however, we have seen the
expression p2n−Nq2n appear before, in the definition of sn. Hence, we have the formula ∀n ∈ N0

p2n −Nq2n = (−1)n+1sn+1

To pinpoint the indices of solutions, we thus need to know when sn = 1. Let π be the period
of the continued fraction of

√
N , as previously defined. Recall10 that (rπ, sπ) = (d, 1) and that

r = (0, r1, . . . , rπ) and s = (1, s1, . . . , sπ).

Lemma. ∀n ∈ N0 sn = 1 ⇐⇒ π|n

Proof. (⇐) s0 = 1. and n ∈ N =⇒ sn = sπ = 1.

(⇒) Suppose not, so that n 6= 0. By the proof of [],
√
N−rn
sn

< 1, so rn ≤ d <
√
N < rn + 1,

so rn = d, so (rn, sn) = (rπ, sπ). Let ν ∈ N : π|ν ∧ |ν−n| ∈ [1, π− 1] so that (rν , sν) = (rπ, sπ).
Then (rn, sn) = (rν , sν), so (an, rn, sn) is periodic with period (= π) ≤ |ν − n| ≤ π − 1, so
π ≤ π − 1 – contradiction.

8Note that (x, y) ∈ Z2 is a solution of a given Pell equation iff (|x|, |y|) is a solution of that equation, so we
may assume w.l.o.g. that (x, y) ∈ N2

0.
9But they don’t call it Computer-Aided Teaching of Applied Mathematics for nothing.

10From the proof of/remark following theorem [].

6



Now, we can characterise how convergents yield solutions to Pell’s equations. ∀n ∈ N0

p2n −Nq2n = 1 ⇐⇒ sn+1 = (−1)n+1 ⇐⇒ n is odd ∧ sn+1 = 1 ⇐⇒ n is odd ∧ π|n+ 1

p2n −Nq2n = −1 ⇐⇒ sn+1 = (−1)n ⇐⇒ n is even ∧ sn+1 = 1 ⇐⇒ n is even ∧ π|n+ 1

Hence, denoting P+ = {n ∈ N0 : p2n −Nq2n = 1} and P− = {n ∈ N0 : p2n −Nq2n = −1},
π is odd : P+ = {kπ − 1 : k ∈ 2N} P− = {kπ − 1 : k ∈ 2N− 1}
π is even : P+ = {kπ − 1 : k ∈ N} P− = ∅

Thus, in most cases, some solutions to Pell’s equations are generated by a subsequence of
(pn, qn), which is distinct (as it is strictly increasing under the pointwise ordering on N2

0). In
particular, there are always infinitely-many solutions to Pell+. The next theorem shows that
these are the only solutions in N2

0.

Theorem. Let (x, y) ∈ N2
0 : x2 −Ny2 = ±1. Then ∃n ∈ [−1,∞) : (x, y) = (pn, qn).

Proof. y = 0 =⇒ x = 1 =⇒ (x, y) = (p−1, q−1). Suppose y ∈ N, so that x 6= 0 (since N 6= 1).

S.t.p.
∣∣∣√N − x

y

∣∣∣ < 1
2y2

, whence, by a property of continued fractions, ∃n ∈ N0 : x
y

= pn
qn

, so, as

x, y are clearly coprime, as are pn, qn, (x, y) = (pn, qn). Indeed,∣∣∣∣√N − x

y

∣∣∣∣ < 1

2y2
⇐=

∣∣∣√Ny − x∣∣∣ =

∣∣∣∣Ny2 − x2√
Ny + x

∣∣∣∣ =
1√

Ny + x
<

1

2y
⇐= 0 < (

√
N − 2)y + x

Also, x2 = Ny2 ± 1 ≥ Ny2 − 1 = N(y2 − 1
N

) ≥ y2 − 1
N
> y2 − 1 (as 1

N
< 1 ≤ y2), so x2 ≥ y2,

so x ≥ y, so (
√
N − 2)y + x ≥ (

√
N − 1)y > 0.

The two important consequences of this are that:

1. Every solution to Pell’s equations turns up eventually when enumerating convergents.

2. Pell− has a solution iff π is even.

The function PellMinus(N) uses this latter condition to test if Pell− is solvable for N ∈ N.
This approach is better than manual computation because it doesn’t require the computation of
convergents (which get much larger than the integers used to compute the continued fraction).
The script Q3b verifies the condition for successive integers until interrupted by the user.

Stopped at N = 432205.

Q3b

Q3: Solvability of Pell−. Here are the integers N ∈ [1, 100] for which Pell− is solvable.

1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74,

82, 85, 89, 97

Q3c

Though (ii) above seems to elucidate the solvability of Pell− at first, it turns out to be hard
to classify when either of the equivalent conditions actually occurs. We can get reasonably far
with a simple criterion for non-solvability.

Suppose ∃n ∈ {p ∈ P : p ∼=4 3} ∪ {4} : n|N . Then Pell− has no solution, as
(
∃(x, y) ∈ N2

0 :
x2−Ny2 = −1

)
=⇒ x2 ∼=n −1 – contradiction, since −1 is not a quadratic residue modulo n.

Hence, a necessary condition for the solvability of Pell− is that neither 4 nor any prime
∼=4 3 divide N . But is it sufficient? Let’s try listing non-square numbers that don’t satisfy the
condition but for which Pell− is not solvable.

34, 146, 178, 194, 205, 221, 305, 377, 386, 410, 466

Q3d

So, no. I’d always felt like there was something shady about the number 34.

7



Q3: Computing Solutions. Finally, we turn to computing solutions to Pell’s equation,
x2 −Ny2 = s ((x, y) ∈ N0), where N ∈ N is non-square and s ∈ {±1}. The aim is to compute
n ∈ N non-trivial solutions. One method follows on from previous work; we can enumerate
convergents, knowing exactly how many/which convergents to keep as solutions. We also know
that any solution can eventually be reached in principle. This method is implemented by the
function PellA(N, s, n).

Another approach is sketched out for interest’s sake11 (and implemented as PellB(N, s, n)).
Z[
√
N ] = {a + b

√
N : (a, b) ∈ Z2} is a subring of R and there is a bijection φ : Z2 ↔ Z[

√
N ],

(a, b) 7→ a+ b
√
N . We have two useful algebraic relations: ∀(a, b), (x, y) ∈ Z2

(x+ y
√
N)(a+ b

√
N) = xa+Nyb+ (xb+ ya)

√
N

(a, b) 6= 0 =⇒ (a+ b
√
N)−1 =

a− b
√
N

a2 −Nb2
= s(a− b

√
N)

Define (α, β) := (pmin(P s), qmin(P s)) to be the fundamental solution of Pells. It is the first
non-trivial solution enumerated by convergents. Firstly, consider s = +1:

Theorem. The solution set of Pell+ on N2
0 is S :=

{
φ−1
(
(α + β

√
N)n

)}
n∈N0

.

Proof. By theorem 2, Pang, the solution set of Pell+ on Z2 is X :=
{
φ−1
(
± (α+β

√
N)n

)}
n∈Z.

For n ∈ N0, let (xn, yn) = φ−1
(
(α + β

√
N)n

)
∈ Z2.

(1, 0), (α, β) ∈ N2
0, so by induction, ∀n ∈ N0 (xn, yn) ∈ N2

0, so S ⊆ X ∩ N2
0.

Also by induction, ∀n ∈ Z φ−1
(
± (α+ β

√
N)n

)
= (±x|n|,±sgn(n)y|n|), so X ∩N2

0 ⊆ S.

Hence, we can recursively generate solutions via (for n ∈ N):

(x0, y0) = (1, 0) (xn, yn) = (xn−1α +Nyn−1β, xn−1β + yn−1α)

The kth solution so-generated is the kth solution given by computing convergents (including
the first convergent-derived solution, (p−1, q−1) = (1, 0)), since both procedures enumerate all
solutions as a pointwise–strictly increasing sequence. Similarly, the solution set on N2

0 of Pell−
is
{
φ−1
(
(α + β

√
N)n

)}
n∈2N−1, which can be enumerated analogously.

Q3: Output. Here are the first 4 non-trivial solutions to Pell’s equations for N ∈ [1, 8]
non-square, where existent.

2+: [3, 2], [17, 12], [99, 70], [577, 408]

2-: [1, 1], [7, 5], [41, 29], [239, 169]

3+: [2, 1], [7, 4], [26, 15], [97, 56]

3-:

5+: [9, 4], [161, 72], [2889 , 1292] , [51841 , 23184]

5-: [2, 1], [38, 17], [682, 305], [12238 , 5473]

6+: [5, 2], [49, 20], [485, 198], [4801, 1960]

6-:

7+: [8, 3], [127, 48], [2024 , 765], [32257 , 12192]

7-:

8+: [3, 1], [17, 6], [99, 35], [577, 204]

8-:

Q3e

11This approach (B) is more efficient, both spatially and temporally, than the original approach (A), but
differences are only significant when A would be required to compute 105 or so convergents, by my estimate.
As an example, I tested both with input (61, 1, 4000). A caused about 4s of CPU load and required about
1GB of extra RAM, whereas B produced no noticeable effect. Python could verify the equality of the output
instantaneously, and that each of the solutions was valid (with no integer overflow optimisations) with 12s of
CPU load. However, printing the 4000th solution in the console caused major CPU load and instability!

8



Here are the fundamental solutions to Pell+, for N ∈ [1, 100] ∪ [500, 550] non-square.

2: [3, 2]

3: [2, 1]

5: [9, 4]

6: [5, 2]

7: [8, 3]

8: [3, 1]

10: [19, 6]

11: [10, 3]

12: [7, 2]

13: [649, 180]

14: [15, 4]

15: [4, 1]

17: [33, 8]

18: [17, 4]

19: [170, 39]

20: [9, 2]

21: [55, 12]

22: [197, 42]

23: [24, 5]

24: [5, 1]

26: [51, 10]

27: [26, 5]

28: [127, 24]

29: [9801, 1820]

30: [11, 2]

31: [1520, 273]

32: [17, 3]

33: [23, 4]

34: [35, 6]

35: [6, 1]

37: [73, 12]

38: [37, 6]

39: [25, 4]

40: [19, 3]

41: [2049, 320]

42: [13, 2]

43: [3482, 531]

44: [199, 30]

45: [161, 24]

46: [24335 , 3588]

47: [48, 7]

48: [7, 1]

50: [99, 14]

51: [50, 7]

52: [649, 90]

53: [66249 , 9100]

54: [485, 66]

55: [89, 12]

56: [15, 2]

57: [151, 20]

58: [19603 , 2574]

59: [530, 69]

60: [31, 4]

61: [1766319049 , 226153980]

62: [63, 8]

63: [8, 1]

65: [129, 16]

66: [65, 8]

67: [48842 , 5967]

68: [33, 4]

69: [7775, 936]

70: [251, 30]

71: [3480, 413]

72: [17, 2]

73: [2281249 , 267000]

74: [3699, 430]

75: [26, 3]

76: [57799 , 6630]

77: [351, 40]

78: [53, 6]

79: [80, 9]

80: [9, 1]

82: [163, 18]

83: [82, 9]

84: [55, 6]

85: [285769 , 30996]

86: [10405 , 1122]

87: [28, 3]

88: [197, 21]

89: [500001 , 53000]

90: [19, 2]

91: [1574, 165]

92: [1151, 120]

93: [12151 , 1260]

94: [2143295 , 221064]

95: [39, 4]

96: [49, 5]

97: [62809633 , 6377352]

98: [99, 10]

99: [10, 1]

500: [930249 , 41602]

501: [11242731902975 , 502288218432]

9



502: [3832352837 , 171046278]

503: [24648 , 1099]

504: [449, 20]

505: [809, 36]

506: [45, 2]

507: [1351, 60]

508: [44757606858751 , 1985797689600]

509: [313201220822405001 , 13882400040814700]

510: [271, 12]

511: [4188548960 , 185290497]

512: [665857 , 29427]

513: [13771351 , 608020]

514: [4625, 204]

515: [17406 , 767]

516: [16855 , 742]

517: [590968985399 , 25990786260]

518: [2367, 104]

519: [14851876 , 651925]

520: [6499, 285]

521: [32961431500035201 , 1444066532654320]

522: [19603 , 858]

523: [81810300626 , 3577314675]

524: [225144199 , 9835470]

525: [6049, 264]

526: [84056091546952933775 , 3665019757324295532]

527: [528, 23]

528: [23, 1]

530: [1059, 46]

531: [530, 23]

532: [2588599 , 112230]

533: [74859849 , 3242540]

534: [3678725 , 159194]

535: [1618804 , 69987]

536: [145925 , 6303]

537: [192349463 , 8300492]

538: [9536081203 , 411129654]

539: [3970, 171]

540: [119071 , 5124]

541: [3707453360023867028800645599667005001 ,

159395869721270110077187138775196900]

542: [4293183 , 184408]

543: [669337 , 28724]

544: [2449, 105]

545: [1961, 84]

546: [701, 30]

547: [160177601264642 , 6848699678673]

548: [6083073 , 259856]

549: [1766319049 , 75384660]

550: [30580901 , 1303974]

Q3f

10



Finally, here are the fundamental solutions to Pell−, when existent, for N ∈ [1, 100] ∪
[500, 550] non-square.

2: [1, 1]

5: [2, 1]

10: [3, 1]

13: [18, 5]

17: [4, 1]

26: [5, 1]

29: [70, 13]

37: [6, 1]

41: [32, 5]

50: [7, 1]

53: [182, 25]

58: [99, 13]

61: [29718 , 3805]

65: [8, 1]

73: [1068, 125]

74: [43, 5]

82: [9, 1]

85: [378, 41]

89: [500, 53]

97: [5604, 569]

509: [395727950 , 17540333]

521: [128377240 , 5624309]

530: [23, 1]

533: [6118, 265]

538: [69051 , 2977]

541: [1361516316469227450 , 58536158470221581]

Q3g

11



4 Continued Fraction Factorisation

Q4: Introduction. Continued fraction factorisation (CFF) aims to factorise N ∈ N by
finding x, y ∈ [0, N − 1] : x2 ≡N y2. Given such numbers, we have (x − y)(x + y) ≡N 0, i.e.
N |(x− y)(x+ y). Supposing that N 6 | x± y, any proper prime factor p of N (existent as N 6= 1
is not prime) must divide either of x− y or x+ y, so the highest common factor of N with one
of x− y and x + y, lying in [1, N ], is guaranteed to be at least p but is not N itself – i.e. is a
non-trivial factor of N .

Is it even possible to find such x, y? If N 6= 1 is odd and composite, it turns out that it
always is.12 Let {pi}ni=1 ⊂ P\{2} be distinct, {ai}ni=1 ⊂ N : N =

∏
i p

ai
i . If ∃j ∈ [1, n] : aj ≥ 2,

then x = 0 and y =
∏

i p
ai−δij
i clearly work. Else, N =

∏n
i=1 pi. Let α ∈ {±1}n. Then by

Chinese Remainder Theorem (CRT) existence (as (pi)i is pairwise-coprime), ∃xα ∈ [0, N − 1] :
∀i ∈ [1, n] xα ≡pi αi, so ∀i ∈ [1, n] x2α ≡pi 1, so by CRT uniqueness, x2α ≡N 1. Now, ∀i ∈ [1, n]
−1 6≡pi 1, so {xα}α∈{±1}n ⊆ [0, N − 1] is distinct. As n ≥ 2, there are thus 2n ≥ 4 square roots
of 1 modulo N . Let x be one of them, and y another s.t. y 6= x,N − x. Then x, y work.

Since the construction of x, y requires explicit knowledge of the factorisation of N , this is
useless as a way of finding a factorisation; CFF aims to find x, y by educated guesswork.

Q4: Computation of HCFs. The determination of hcf(N, x ± y) is done by Euclid’s al-
gorithm, implemented as Euclid(a, b) (a, b ∈ N0). This simple algorithm executes one check
and one integer division (both of complexity O(1)) in each recursive step except the last, when
the division is forgone. Hence, its complexity is the number of steps. Denote the residue
of a mod b (if b 6= 0) by a% b.13 If a < b, the first step just calls the algorithm on (b, a),
where b ≥ a, so suppose a ≥ b ≥ 1. Then at every step,14 a = qb + a% b (q ≥ 1), so
a ≥ b + a% b > 2(a% b) – i.e. a% b < a

2
(so every two non-halting steps, a more than halves,

and clearly b ≤ a always). The algorithm halts when b = 0, which must happen at most one

step after a ≤ 1. By the above, a ≤ a02
−bn2 c where n is the number of steps (if not yet halted),

so a ≤ 1 ⇐= a02
−bn2 c ≤ 1 ⇐= a0 ≤ 2

n−1
2 ⇐= 2 log2(a0) + 1 ≤ n. Therefore, there are

at most 2 log2(a) + 3 steps, and Euclid’s algorithm has complexity O(log(max(a, b))). Hence,
given x, y ∈ [0, N − 1] : x2 ≡N y2, the determination of a proper factor of N (if existent) has
complexity O(log(N)).

Q5. cfpm(N, k) computes (pn %N)kn=0 by alternately generating pn and reducing them mod-
ulo N . Here are initial values of (pn %N) (p) and (p2n %N) (pp) for some N , thus computed.

N: 2012449237

p: 0, 1, 44860, 134581 , 4889776 , 5024357 , 9914133

pp: 0, 1, 2012419600 , 2428, 2012394616 , 34521, 2012406609

N: 2575992413

p: 0, 1, 50754, 203017 , 862822 , 23499211 , 47861244

pp: 0, 1, 2575968516 , 23681, 2575988740 , 40124, 2575952112

N: 3548710699

p: 0, 1, 59571, 1012708 , 1072279 , 9590940 , 20254159

pp: 0, 1, 3548704041 , 101253 , 3548698064 , 54821 , 3548703580

Q5

12If it is even and composite, well, it is divisible by 2.
13Mimicking Python’s notation.
14Except the last, when b = 0 becomes true.

12



Denote the residue of a ∈ Z mod N by a ∈ [0, N − 1]. To avoid “integer overflow” in the
computation of p2n, we conjure another pointless technique. Given pn ∈ [0, N − 1] (N ≤ 1010),
we decompose its decimal expansion as pn = 105a+ b, a, b ∈ [0, 105 − 1]. Then,

p2n = 1010a2 + 2 · 105ab+ b2 = 1010aa+ 2 · 105ab+ b2

demonstrating a way to evaluate p2n while keeping all intermediate values below 1015.

Q6. The generator function ker(A) takes as input A ∈ Matmn(Z2) (m,n ∈ N) and yields,
upon request,15 first the dimension of its kernel, and then a listing of ker(A)\{0}. Sample
output follows:

- - - -

1 1 0 0

1 0 1 0

1 1 0 0

- - - -

ker \{0}: (dim = 2)

0, 0, 0, 1

1, 1, 1, 0

1, 1, 1, 1

Q6

Q7: Introduction. Our aim, in factorising N ∈ N, is essentially to find x, y ∈ [0, N − 1] :
x2 ≡N y2 and x 6≡N ±y (conditions that guarantee a proper non-trivial factor of N as per Q4).
We make the following guesses:

• Fix B ⊂ P finite, a factor base.

• Find {bi}i∈A ⊆ [2, N − 1], a finite set of numbers that are B-smooth.

Now, we analyse them as follows. We set x =
∏

i∈I bi, for some I ⊆ A to be determined
later, whence x2 is square. To find another square that is congruent to it mod N , note that
x2 ≡N

∏
i∈I〈b2i 〉, where 〈x〉 is the residue of x ∈ Z mod N contained in (−N

2
, N

2
].16

∏
i∈I〈b2i 〉

is not necessarily square; our hope to find I ⊆ A (I 6= ∅)17 such that it is. If we can do this,
we let y =

√∏
i∈I〈b2i 〉. Now, x̄, ȳ satisfy all the targeted conditions except perhaps x̄ 6≡N ±ȳ.

Hopefully, computing hcf(N, x̄± ȳ) will still yield proper non-trivial factors.
We want {bi}i∈A to be smooth over a factor base because this yields an efficient way of

checking that
∏

i∈I〈b2i 〉 is square for given I ⊆ A. Indeed, one can construct the matrix
(xst)(s,t) ∈ MatB∪{−1},A(Z2), where xst is 1/0 s appears to an odd/even power in the prime
factorisation of bt (if s ∈ B), or if bt is itself odd/even (if s = −1). Then I works iff (1[a ∈ I])a∈A
is in ker((xst))\{0}, as computable by ker.

Suppose that N is not square.18 Then the convergents (pn)∞n=0 have the useful property that

p2n ≡N p2n −Nq2n = (−1)n+1sn+1 ∈ (−2
√
N, 2
√
N)

so if N ≥ 16, whence 2
√
N ≤ N

2
, then

〈p2n〉 ∈ (−2
√
N, 2
√
N)

Thus, as 2
√
N

N/2
= 4√

N
→ 0 as n → ∞, the numbers 〈p2n〉 are asymptotically small.19 This

makes them a good source of B-smooth numbers, because their factorisations are likely to

15I.e. being called by the next or for statements.
16Though any residue will do.
17If I = ∅,x = y = 1, so hcf(N, x̄± ȳ) (as below) yields N or 2.
18We can check this by checking if b

√
Nc2 = N , and have found a factor if so.

19Note that this accords with the data given by Q5, where all digits of p2n except the last 5 agreed with those
of N , a 10-digit number (because 2

√
N is a 5-digit number in each case).

13



consist of small primes, making it more likely that there is repetition of factors between their
factorisations, and so that we can find the I we hoped for (making

∏
i∈I〈b2i 〉 square).

Hence, we compute a fixed number of convergents, say {pi}ki=0, k ∈ N. To construct B, we
factorise the 〈p2i 〉 using trial division20 and keep any primes that appear at least twice among
the (unified) factorisation of

∏k
i=0〈p2i 〉, since if a 〈p2i 〉 is to be included in square

∏
i∈I〈p2i 〉, it

cannot contain a single instance of a prime that appears in no other 〈p2j〉. Finally, we keep the
convergents that are B-smooth as the set A.

Q7: Implementation. The version of CFF detailed above is implemented as cff(N, k),
which attempts to factorise N ∈ N using the convergents {pi}ki=0, k ∈ N0. The algorithm returns
proper non-trivial factors if it finds them, and nothing otherwise; it also prints p = {pi}ki=0,
q = {〈p2i 〉}ki=0, a list of full factorisations f of {〈p2i 〉}ki=0, the factor basis B, the indices of
B-smooth convergents A, and then iteratively until a factor is found, the following: subsets
I ⊆ A :

∏
i∈I〈p2i 〉 is square, and x̄, ȳ. p, q, f are disabled by default. Sample output:

B = [3, 37, 89, 2, 7, 17, 19, 379, 53, 31, 107]

A = [0, 2, 7, 9, 11, 19, 26, 31, 35, 37, 40, 41, 42, 43, 50]

I = [26, 50] ; x = 163394263 ; y = 17442

[45751 , 43987]

cff(2012449237,50)

B = [23, 7, 17, 2, 211, 41, 11, 241, 149, 71, 31, 709, 19, 59, 107]

A = [5, 8, 13, 17, 21, 23, 24, 31, 34, 37, 43, 45, 46, 47]

I = [5, 13, 17, 23, 45] ; x = 476063174 ; y = 387922435

[36467 , 70639]

cff(2575992413,50)

B = [2, 3, 5, 7, 19, 13, 41, 37, 61, 29, 163]

A = [2, 10, 11, 17, 18, 24, 26, 35, 41, 44, 48]

I = [2, 41, 44] ; x = 3393643449 ; y = 7521150

[31267 , 113497]

cff(3548710699,50)

B = [2, 3, 5, 19, 7, 31, 17, 59, 103, 281, 71, 37, 13, 127, 467,

73, 23]

A = [3, 7, 8, 13, 16, 21, 24, 28, 33, 34, 35, 37, 40, 46, 49]

I = [8, 16, 33, 40, 46] ; x = 1349853548 ; y = 1188247663

I = [8, 16, 35] ; x = 2633813 ; y = 2633813

I = [33, 35, 40, 46] ; x = 2317095244 ; y = 221005967

I = [3, 24, 34] ; x = 2537666901 ; y = 434310

[3]

cff(2538101211,50)

20Trial division is likely much faster on the smaller 〈p2i 〉 than on the original N .

14



Q7: Number of Convergents Required. If a factorisation succeeds for some k ∈ N
number of convergents, it will succeed for any higher number (assuming unlimited computation
time), since the factor basis and set of smooth numbers both expand if k increases, and so the
same selection of convergents will be enumerated eventually. Thus, the minimum number of
convergents is given by any k for which factorisation succeeds but fails for k − 1.

Thus, the example polynomials require, respectively, 9/45/44/34 convergents. Examples of
similar order of magnitude can be constructed that require much greater numbers of conver-
gents, like 1380947153, which requires 462. This number is a product of two primes and so is
also relatively hard to factorise by trial division.

By generating random numbers and attempting to factorise them, I estimate that around
20 convergents are typically required for 5-digit numbers, though there was bias introduced by
rejecting numbers that required over 100 convergents (typically 1 in a sample of 20).21

Q7: Efficiency. For very large N , CFF becomes bottlenecked by the time taken to factorise
the 〈p2i 〉 by trial division. This can be avoided by applying CFF recursively (since each value of
〈p2i 〉 is much smaller than N , as above), but this would be difficult to implement without further
adjustment because CFF is not guaranteed to factorise its (composite) input. Another remedy
could be keeping the factor base fixed, to an initial segment of prime numbers, for example.
Testing smoothness over a relatively-small factor base is much faster generally than fully fac-
torising a number, even of half the order of magnitude of N , as in the case of 〈p2i 〉. However,
this would necessitate more convergents to be verified as smooth, and so to be computed.

21The gigantic kernels that arise in certain attempts to factorise composite numbers made it infeasible to test
this fairly for 10-digit numbers. ker is designed to halt after yielding 200 vectors.

15



A Programs

The programs take the form of five modules: B.py, CF.py, Pell.py, Ker.py, CFF.py. Program
output printed in the report is generated by functions in Output.py, as annotated throughout
the report. InitB.py is a script that, when run in a Python shell, loads all functions into the
global memory.

A.1 Documentation

This section outlines the purpose of the project’s functions.

rf(n): n ∈ N0. Returns b
√
nc using integer arithmetic only.

sm(a,b): a ∈ Z, b ∈ N0. Returns the representative of b
√
nc modulo N in (n

2
, n
2
].

euclid(a,b): a, b ∈ N0. Returns hcf(a, b),22 from the remainder list of Euclid’s algorithm.

factor(n): n ∈ N0. Returns a trial-division prime factorisation of n as a list with repeats.23

fb(B,n): B ∈ P∗, n ∈ N0. Returns a trial-division prime factorisation of n if n is B-smooth;
else, returns 0.

cf(N,k): N, k ∈ N0. Returns [a,r,s], the sequences (an)kn=0, (rn)kn=0, (sn)kn=0 derived from
the continued fraction expansion of

√
N .

cfc(N): N, k ∈ N0. Returns the closed-form variant of cf(N,k).

cfp(X); cfq(X): Returns the p-convergents (cfp)/the q-convergents (cfq) of the continued
fraction expansion X. the p-convergents modulo N (cfpm) of

√
N truncated to k + 1 terms.

cfpm(N,k): N, k ∈ N0. Returns the p-convergents modulo N from index 0 to k of the continued
fraction expansion of

√
N .

PellPQ(N,X): N ∈ N0 with continued fraction expansion X of its square root. Returns the
sequence p2i −Nq2i .

PellMinus(N): N ∈ N. Returns the truth value of the solvability of Pell− for N .

PellA(N,s,n): N ∈ N non-square, s ∈ {±1}, n ∈ N0. Returns n non-trivial solutions to Pells
for N via convergent computation.

PellB(N,s,n): N ∈ N non-square, s ∈ {±1}, n ∈ N0. Returns n non-trivial solutions to Pells
for N via recursive unit generation.

ker(A): A ∈ Matm,n(F2). Yields first the dimension of ker(A), and then successive vectors in
ker(A) each time it’s called (usually via a for loop).

cff(N,k): N, k ∈ N0. Runs continued fraction factorisation with k + 1 partial quotients and
returns either some factors of N or an error message.

22Convenient convention: hcf(0, 0) = 0; 00 = 1
23In the case n = 0, factor(n) returns [0].

16



A.2 B

def rf(n): # returns floor(sqrt(n))

i = 1; x = 0

while True:

if (x + i) ** 2 <= n:

i <<= 1

elif i != 1:

x += i >> 1; i = 1

else:

return x

def sm(a,b): # symmetric a % b

x = a % b

if x > b // 2:

x -= b

return x

def euclid(a,b): # Euclid ’s algorithm

return a if b == 0 else euclid(b,a%b)

def factor(n): # trial division factoriser

x = []; r = 2; m = rf(n)

while r <= m:

if n % r == 0:

n //= r; m = rf(n)

x.append(r)

else:

r += 1

if n != 1:

x.append(n)

return x

def fb(B,n): # factor base algorithm

if n == 0:

return 0

y = []

while True:

if n == 1:

return y

for r in B:

if n % r == 0:

n //= r

y.append(r)

break

else:

return 0

17



A.3 CF

from B import *

def cf(N,k): # cf of sqrt(N) (repeating)

d = rf(N)

a = [d]; r = [0]; s = [1]

if d ** 2 != N:

for i in range(k):

r.append(a[i] * s[i] - r[i])

s.append ((N - r[i+1] ** 2) // s[i])

a.append ((d + r[i+1]) // s[i+1])

return [a,r,s]

def cfc(N): # cf of sqrt(N) (non-repeating)

d = rf(N)

a = [d]; r = [0]; s = [1]

if d ** 2 != N:

i = 0

while True:

r.append(a[i] * s[i] - r[i])

s.append ((N - r[i+1] ** 2) // s[i])

a.append ((d + r[i+1]) // s[i+1])

i += 1

if a[i] == d << 1:

break

return [a,r,s]

def cfp(X): # p convergents of sqrt(N) up to index k

a = X[0]; p = [0,1]

for i in range(len(a)):

p.append(a[i]*p[i+1]+p[i])

return p

def cfq(X): # q convergents of sqrt(N) up to index k

a = X[0]; q = [1,0]

for i in range(len(a)):

q.append(a[i]*q[i+1]+q[i])

return q

def cfpm(N,k): # p conv. of sqrt(N) mod N up to index k

a = cf(N,k)[0]; p = [0,1]

for i in range(len(a)):

p.append ((a[i]*p[i+1]+p[i])%N)

return p

18



A.4 Pell

from CF import *

def PellPQ(N,X): # p^2 - Nq^2

p = cfp(X); q = cfq(X)

return [p[i+2]**2-N*q[i+2]**2 for i in range(len(p)-2)]

def PellMinus(N): # p^2 - Nq^2

return len(cfc(N)[0]) % 2 == 0 if N != 1 else True

def PellA(N,s,n):

l = len(cfc(N)[0]) - 1; b = l % 2

if l == 0 or [b,s] == [0,-1] or n == 0:

r = []

else:

if [b,s] == [0 ,1]:

r = [i*l - 1 for i in range(1,n+1)]

elif [b,s] == [1,1]:

r = [2*i*l - 1 for i in range(1,n+1)]

elif [b,s] == [1,-1]:

r = [(2*i-1)*l - 1 for i in range(1,n+1)]

X = cf(N,r[-1]); p = cfp(X); q = cfq(X)

return [[p[t+2],q[t+2]] for t in r]

def PellB(N,s,n):

X = PellA(N,s,min(1,n))

if len(X) == 0:

return X

f = [X[0][0] ,X[0][1]]; x = f; y = [f]

M = lambda a,b,N: [a[0]*b[0]+N*a[1]*b[1], a[0]*b[1]+a[1]*b

[0]]

if s == -1:

f = M(f,f,N)

for i in range(n-1):

x = M(x,f,N)

y.append(x)

return y

19



A.5 Ker

from B import *

def ker(A):

m = len(A); n = len(A[0])

B = [int(’’.join([str(i) for i in A[i]]) ,2) for i in range(m)

]

i = 0; j = 0; p = []

# Convert matrix to row-echelon and find pivot variables p.

while i < m and j < n:

for k in range(i,m):

if (B[k] >> (n-1-j)) & 1 == 1:

B[i],B[k] = B[k],B[i]

for l in range(i+1,m):

if (B[l] >> (n-1-j)) & 1 == 1:

B[l] ^= B[i]

p.append(j)

i += 1; j += 1

break

else:

j+=1

# Find free variables f and output how many there are.

f = []

for s in range(n):

if s not in p:

f.append(s)

yield len(f)

# Generate non-trivial kernel vectors.

y = [0 for t in range(n)]

for e in range(1,min(1 << len(f) ,201)):

# Assign 0/1 to free variables of y as per e in binary.

for i in range(len(f)-1,-1,-1):

y[f[i]] = e & 1

e >>= 1

# Determine pivot variables of y by back-substituting.

for k in range(len(p)-1,-1,-1):

l = p[k]

x = 0; b = B[k]

for s in range(n-1,l,-1):

x ^= y[s] & b

b >>= 1

y[l] = x

yield y

return

20



A.6 CFF

from B import *; from CF import *; from Ker import *

def cff(N,k): # cf factoriser

# Find p convergents , q = <p^2> and its TD factorisations.

p = cfpm(N,k)[2:]; #print(’p =’,p,’\n’)

q = [sm(x**2,N) for x in p]; #print(’<p^2> =’,q,’\n’)

f = [factor(abs(x)) for x in q]; #print(’f =’,f,’\n’)

# Find factor basis B.

g = [z for z in [y for x in f for y in x] if z != 0]

B = []

for i in g:

if g.count(i) > 1 and i not in B:

B.append(i)

if len(B) == 0:

print(’No basis.’); return

print(’B =’,B)

# Find indices of B-numbers A.

f = [fb(B,abs(x)) for x in q]

A = [i for i in range(len(q)) if f[i] != 0 and q[i] != 1]

if len(A) == 0:

print(’No non-trivial B-numbers.’); return

print(’A =’,A,’\n’)

# Prepare selection matrix X.

X = [[f[i].count(j) & 1 for i in A] for j in B]

X += [[int(q[i] < 0) for i in A]]

Y = ker(X)

if next(Y) == 0:

print(’Trivial kernel.’); return

# Test successive kernel vectors until success.

for K in Y:

# Determine selection I from kernel vector K

I = [A[i] for i in range(len(A)) if K[i] == 1]

# Test selection I

x = 1; t = 1

for i in I:

x *= p[i]; t *= q[i]

y = rf(t)

if t != y**2: print(’ERROR: t is not square.’)

x %= N; y %= N

if (x**2 - y**2) % N != 0: print(’ERROR: not x^2~y^2.’)

print(’I =’,I,’; x =’,x,’; y =’,y)

a = [euclid(N,abs(x-y)),euclid(N,x+y)]

a = [t for t in a if t not in [1,N]]

if len(a) != 0:

return a

# If kernel is exhausted:

print(’No factors found.’,’\n’)

21


