16.1

The Galois Group of a Polynomial

Contents

1 Algorithms 1

2 Analysis 6

A Programs 12
A.1 Documentation, 12
A2 O 13
A3 Poly . . . e 14
A4 Galois, 15

Introduction

This project is programmed in Python 3.5. Consult section A for program documentation,
listings and information on the structure of the programming for the project, as appropriate.
This report is written in BTEX 2¢.

1 Algorithms

Background. Let’s first settle some semantics. Let f € Z[X]| be monic. Via coefficient-wise
inclusion, Z[X] — Q[X], and so f € Q[X]. Let F(f) be a splitting field of f € Q[X] (for the
sake of concreteness, take this to be Q(Root;(C)) < C with the inclusion map). Then F(f)/Q
is a Galois extension with Galois group Gal(F'(f)/Q).

Let Z(f) = Rooty(F(f)) € F(f). Suppose f is separable’ —ie. f, f' € Q[X] have no
common irreducible factor. Then |Z(f)| = deg(f).

Gal(F(f)/Q) actson Z(f) via ¢ — (z — ¢(x)) (closure since Vo € Gal(F(f)/Q) Vx € Z(f)
f(o(z)) = o(f(z)) = ¢(0) = 0; other properties are immediate). The permutation represen-
tation Q of this action is injective because Z(f) C F(f) @ (the fixed field of ker(Q2)) and
Q(Z(f)) = F(f), whence ker(2) = {¢}. Hence, via p,

Gal(F(f)/Q) = G(f) :={2(f) = Z(f), v = ¢(z) - ¢ € Gal(F(f)/Q)} < Sym(Z(f)) = Sn

G(f) is the Galois group of f, and inherits cycle types from Sym(Z(f)). We aim to classify it
up to isomorphism. Although the distribution of cycle types is not itself a group property, it
will prove useful in the computation of the group and is the basis of the project algorithm.

Q1. Let p € P and consider the ring R = Z,[X]. The division algorithm is implemented
as the function div(a,b,p), which returns the quotient and remainder of dividing a € R by
b € R\{0}. For example, in Z;[X]|, X = (3X?+ X +2)(2X + 1) + 3.

>>> div([0,0,0,1],[1,2],5) (2, 1, 31, [3]1]

Via Euclid’s algorithm, this can be applied to compute the highest common factor of
(a,b) € R*\{(0,0)}, whose monic associate is returned by the function hcf(a, b, p). For example,
noting that all linear polynomials over a field are irreducible,

>>> hcf (mp(mp ([2,2],03,31,5),04,11,5), mp([1,1]1,[2,1]1,5),5)
[1, 1]

Another application of the division algorithm we require is for a fast modular exponenti-
ation algorithm. Implemented as exp(a, b, n, p), which computes the remainder of dividing a”
(a € R, n € Ny) by b € R\{0}, the algorithm decomposes n into binary, generates a truncated
sequence of a?" by iterated squaring and reduction modulo b (with the division algorithm) and
multiplies its terms together sequentially according to n, reducing modulo b between each step.
Eg,inZs[X], (X +1)°=X3+3X?4+3X +1=x23X + 1.

>>> exp([1,1],[0,0,1]1,3,5) (1, 3]

Q2. The decomposition algorithm is implemented as decomp(f, p), which computes the cycle
type of some generator of the decomposition group of f € Z[X]| modulo p € P, viewed as a
permutation group in the way outlined in Background.? The decomposition group itself is thus
isomorphic to C,,, where n € N is the order of the generator — i.e. the lowest common multiple
of its cycle type (as an integer partition).

The notation we’ll use to represent cycle types is [a;]¥_;, where a; € Ny is the number of
i-cycles present, and k € N is at least the longest cycle’s length. Trailing zeros may be omitted.

Q3. Here follows the output of decomp(f,p), for f an example polynomial and p € PN|[1,97].

"'Warning: a slightly unconventional definition.

%S0, irrespective of choice of splitting field over Z,[X]. Interpreting the program’s output this way requires
one to envisage (but not construct!) a fixed splitting field. However, we only care that the output is the cycle
type of some element of G(f).

X2 + X + 41 X"3 + X°2 - 2X -1

2: [0, 1] 2: [0, O, 1]

3: [0, 1] 3: [0, 0, 1]

5: [0, 1] 5: [0, 0, 1]

7: [0, 1] 7: Not separable.
11: [0, 1] 11: [0, 0, 1]
13: [0, 1] 13: [3, 0, O]
17: [0, 1] 17: [0, O, 1]
19: [0, 1] 19: [0, 0, 1]
23: [0, 1] 23: [0, O, 1]
29: [0, 1] 29: [3, 0, 0]
31: [0, 1] 31: [0, 0, 1]
37: [0, 1] 37: [0, O, 1]
41: [2, 0] 41: [3, 0, O]
43: [2, 0] 43: [3, 0, O]
47: [2, 0] 47: [0, O, 1]
53: [2, 0] 53: [0, O, 1]
59: [0, 1] 59: [0, 0, 1]
61: [2, 0] 61: [0, 0, 1]
67: [0, 1] 67: [0, 0, 1]
71: [2, 0] 71: [3, 0, 0]
73: [0, 1] 73: [0, O, 1]
79: [0, 1] 79: [0, 0, 1]
83: [2, 0] 83: [3, 0, 0]
89: [0, 1] 89: [0, 0, 1]
97: [2, 0] 97: [3, 0, 0]
X°3 + 2X + 1 X74 - 2X°2 + 4
2: [1, 1, 0] 2: Not separable.
3: [0, O, 1] 3: Not separable.
5: [0, 0, 1] 5: [0, 2, 0, 0]
7: [0, O, 1] 7: [0, 2, 0, O]
11: [1, 1, 0] 11: [0, 2, 0, 0]
13: [1, 1, 0] 13: [0, 2, 0, O]
17: [3, 0, 0] i17: [0, 2, 0, O]
19: [0, 0, 1] 19: [4, 0, 0, 0]
23: [1, 1, 0] 23: [0, 2, 0, O]
29: [0, 0, 1] 29: [0, 2, 0, O]
31: [1, 1, O] 31: [0, 2, 0, O]
37: [1, 1, 0] 37: [0, 2, 0, O]
41: [0, 0, 1] 41: [0, 2, 0, O]
43: [1, 1, 0] 43: [4, 0, 0, 0]
47: [1, 1, 0] 47: [0, 2, 0, O]
53: [0, O, 1] 53: [0, 2, 0, O]
59: Not separable. 59: [0, 2, 0, O]
61: [1, 1, 0] 61: [0, 2, 0, O]
67: [1, 1, 0] 67: [4, 0, 0, O]
71: [3, 0, 0] 71: [0, 2, 0, O]
73: [1, 1, 0] 73: [4, 0, 0, O]
79: [0, O, 1] 79: [0, 2, 0, O]
83: [1, 1, 0] 83: [0, 2, 0, 0]
89: [1, 1, 0] 89: [0, 2, 0, O]
97: [1, 1, 0] 97: [4, 0, 0, 0]

X4 - X°3 - 4X + 16 X4 + 7X72 + 6X + 7

2: Not separable. 2: Not separable.
3: Not separable. 3: Not separable.
5: [0, 0, O, 1] 5: [0, 2, 0, O]
7: [0, 0, O, 1] 7: [4, 0, 0, O]
11: Not separable. 11: [0, 2, 0, 0]
13: [0, 2, 0, 0] 13: Not separable.
17: [2, 1, 0, O] 17: [0, 2, 0, O]
19: [0, 0, 0, 1] 19: [4, 0, 0, O]
23: [0, 2, 0, O] 23: [0, 2, 0, 0]
29: [2, 1, 0, O] 29: [0, 2, 0, O]
31: [2, 1, 0, O] 31: [4, 0, 0, O]
37: [0, 2, 0, O] 37: [4, 0, 0, O]
41: [2, 1, 0, 0] 41: [0, 2, 0, O]
43: [0, 0, O, 1] 43: [4, 0, 0, O]
47:. [0, 2, 0, O] 47:. [0, 2, 0, O]
53: [0, 0, 0O, 1] 53: [0, 2, 0, 0]
59: [0, 2, 0, O] 59: [0, 2, 0, O]
61: [0, 2, 0, O] 61: [4, 0, 0, O]
67: [2, 1, 0, 0] 67: [4, 0, 0, O]
71: [0, 2, 0, O] 71: [0, 2, 0, O]
73: [0, 2, 0, O] 73: [4, 0, 0, O]
79: [0, O, O, 1] 79: [4, 0, 0, O]
83: [0, 2, 0, 0] 83: [0, 2, 0, 0]
89: [0, 0, 0, 1] 89: [0, 2, 0, 0]
97: [4, 0, 0, 0] 97: [4, 0, 0, O]
X4 - 2X°3 + BX + b5 X4 + 3X°3 - 6X72 - 9X + 7
2: [0, O, O, 1] 2: Not separable.
3: Not separable. 3: [0, 2, 0, O]
5: Not separable. 5: Not separable.
7. [0, O, O, 1] 7: [2, 1, 0, 0]
11: [0, 0, 0O, 1] 11: [2, 1, 0, O]
13: [1, 0, 1, 0] 13: [0, 2, 0, O]
17: [1, 0, 1, O] 17: [2, 1, 0, O]
19: [1, 0, 1, 0] 19: [2, 1, 0, O]
23: [0, O, 0O, 1] 23: [2, 1, 0, O]
29: [1, 0, 1, 0] 29: [2, 1, 0, 0]
31: [1, 0, 1, O] 31: [4, 0, 0, O]
37: [0, O, O, 1] 37: [0, 2, 0, O]
41: [1, 0, 1, O] 41: Not separable.
43: [2, 1, 0, O] 43: [0, 2, 0, O]
47: [1, 0, 1, O] 47: [2, 1, 0, O]
53: [0, 2, 0, 0] 53: [0, 2, 0, O]
59: [1, 0, 1, 0] 59: [2, 1, 0, O]
61: [0, O, O, 1] 61: [2, 1, 0, O]
67: [1, 0, 1, 0] 67: [0, 2, 0, 0]
71: [1, 0, 1, O] 71: [4, 0, 0, O]
73: [1, 0, 1, O] 73: [2, 1, 0, 0]
79: Not separable. 79: [4, 0, 0O, 0]
83: [0, 0, O, 1] 83: [0, 2, 0, 0]
89: [0, 0, O, 1] 89: [4, 0, 0, 0]
97: [0, 2, 0, 0] 97: [2, 1, 0, 0]

X°5 + 36 X6 + X°3 - 3X"2 + 3

2: Not separable. 2: Not separable.

3: Not separable. 3: Not separable.

5: Not separable. 5: [0, O, O, O, 1]
7: [1, 0, O, 1, O] 7: [2, 0, 1, O, O]
11: [0, O, O, O, 1] 11: [2, 0, 1, 0, O]
13: [1, 0, O, 1, O] 13: [0, O, O, O, 1]
17: [1, 0, 0, 1, 0] i7: [0, O, O, O, 1]
19: [1, 2, 0, 0, O] 19: [0, O, O, O, 1]
23: [1, 0, 0, 1, O] 23: [0, 0, O, O, 1]
29: [1, 2, 0, O, O] 29: [1, 2, 0, 0, 0]
31: [5, 0, O, O, O] 31: [1, 2, 0, 0, 0]
37: [1, 0, O, 1, O] 37: [0, 0, O, O, 1]
41: [0, O, O, O, 1] 41: Not separable.

43: [1, 0, 0, 1, O] 43: [2, 0, 1, 0, O]
47: [1, 0, 0, 1, 0] 47: [2, 0, 1, 0, 0]
53: [1, 0, 0, 1, O] 53: [0, 0, 0O, O, 1]
59: [1, 2, 0, 0, O] 59: [2, 0, 1, 0, O]
61: [0, O, O, O, 1] 61: [0, O, 0O, O, 1]
67: [1, 0, 0, 1, 0] 67: [2, 0, 1, 0, O]
71: [0, O, O, O, 1] 71: [1, 2, 0, 0, O]
73: [1, 0, 0, 1, O] 73: [1, 2, 0, 0, 0]
79: [1, 2, 0, 0, 0] 79: [2, 0, 1, 0, O]
83: [1, 0, 0, 1, 0] 83: [2, 0, 1, 0, O]
89: [1, 2, 0, 0, O] 89: [2, 0, 1, 0, O]
97: [1, 0, 0, 1, O] 97: [2, 0, 1, 0, O]
X6 - bX + 3 X5 - 11X°3 + 22X -
2: [0, 1, 1, 0, O] 2: [0, 0, 0, O, 1]
3: [1, 2, 0, 0, O] 3: [0, O, O, O, 1]
5: Not separable. 5: [0, O, O, O, 1]
7: Not separable. 7: [0, O, O, O, 1]
11: [2, 0, 1, 0, 0] 11: Not separable.

13: [1, 2, 0, 0, O] 13: [0, O, O, O, 1]
i7: [t, 2, 0, 0, O] i7: [0, O, O, O, 1]
19: [3, 1, 0, 0, 0] 19: [0, O, O, O, 1]
23: [0, 1, 1, 0, O] 23: [6, 0, O, 0, 0]
29: [2, 0, 1, 0, O] 29: [0, 0O, O, O, 1]
31: [3, 1, 0, 0, O] 31: [0, O, O, O, 1]
37: [0, 1, 1, 0, O] 37: [0, 0, O, O, 1]
41: [3, 1, 0, 0, O] 41: [0, O, O, O, 1]
43: [0, 1, 1, 0, O] 43: Not separable.

47: [1, 2, 0, 0, O] 47: [0, O, O, O, 1]
53: [3, 1, 0, 0, 0] 53: [0, 0, O, O, 1]
59: [3, 1, 0, 0, O] 59: [0, 0, O, O, 1]
61: [3, 1, 0, O, O] 61: [0, O, O, O, 1]
67: [0, 1, 1, 0, O] 67: [5, 0, 0, 0, O]
71: [2, 0, 1, 0, O] 71: [0, O, O, O, 1]
73: [1, 2, 0, 0, O] 73: [0, O, O, O, 1]
79: [2, 0, 1, 0, O] 79: [0, O, 0O, O, 1]
83: [1, 2, 0, 0, O] 83: [0, 0, O, O, 1]
89: [3, 1, 0, 0, O] 89: [6, 0, O, 0, 0]
97: [1, 2, 0, O, O] 97: [0, O, O, O, 1]

2X72 + 8X + 4
Not separable.

X°7 + X°4

X6 + X + 1

2:
3:

Not separable.

Not separable.

59:

X3 + 5X +1

4X"4 -

X7 + X°5

2X°6 + 2X + 2
Not separable.

X~7

2:

Not separable.

3:

Not separable.

3:

Not separable.

11:

2 Analysis

Q4: Data. Our aim is to classify the Galois groups of the example polynomials f up to
isomorphism. We can deduce from the above output that any cycle type listed for f appears
as the cycle type of some element of G(f). Thus, in finding G(f), we only need to know which
cycle types appear in the lists. Listed below are the cycle types yielded by decomp(f, p) at some

point for p up to 2000.

X"2 + X + 41
(o,11, [2]
X3 + 2X + 1
(1,11, [0,0,1], [3]
X3 + X"2 - 2X - 1
(0,0,1], [3]
X"4 - 2X°2 + 4
(0,21, [4]

X4 - X°3 - 4X + 16
(0,0,0,11, [0,2], [2,1], [4]
X"4 - 2X°3 + BX + 5
(0,0,0,11, [1,0,11, [2,1], [0,2], [4]
X“4 + 7X°2 + 6X + 7
(0,21, [4]
X“4 + 3X"3 - 6X°2 - 9X + 7
(0,21, [2,11, [4]

X"56 + 36

(1,0,0,11, [0,0,0,0,1], [1,2], [5]
X"56 - 5X + 3

(o,1,11, (1,21, [2,0,1], [3,1], [5]
X"5 + X"3 - 3X"2 + 3

(0,0,0,0,11, [2,0,1], [1,2], [5]
X"5 - 11X°3 + 22X - 11

(0,0,0,0,1]1, [5]

X6 + X + 1

(o,o0,0,0,0,11, f(t,t,11, (0,0,2], [t1,0,0,0,1], [0,1,0,1],

(2,0,0,1]1, [3,0,1]1, [2,2], [0,3], [4,1]
X°7 - 2X°6 + 2X + 2

[O,O,O,O’O,O’l], [0’2,1], [1’1,011], [2,020,0’1], [13032],

(3,21, [4,0,1]
X°7 + X"4 - 2X°2 + 8X + 4
(0,2,11, [t1,3], [3,2], [4,0,11, [5,1], [7]
X°7 + X°5 - 4%X°4 - X"3 + 5X + 1
[0,0,0,0,0,0,11, [1,3], [7]

Q4: Methods. Let’s assemble a toolbox for our analysis. It will comprise 7 tools.

L: Lower bounds. The order of an element of a permutation group (like G(f)) is the lowest
common multiple (LCM) of its cycle type, presented as an integer partition. Thus, every
cycle type present in G(f) determines an order present, which divides |G(f)|; hence, the

6

LCM of the LCM of the cycle types divides |G(f)|. Beyond that, since an element of
order n € N generates an embedding C,, — G(f), we get lower bounds on the number of
elements in G(f) of a certain order by counting them in C,,.

F: Full data. We can go further with our initial use of the data. In a way that will be made
precise in the Density paragraph, each of our lists of cycle types is likely to comprise the
full list of cycle types extant in G(f). Note the obvious exceptions — polynomials 13 and
14 are missing the cycle type [deg(f)], which corresponds to the identity of G(f) and so
must be there. We’ll append those and assume that the resulting lists are indeed full.?

N: Irreducible degree factor lemma. Suppose f is irreducible. It has a root o € F(f)
when evaluated in F(f)/Q (its splitting field), and being monic, it is the minimal poly-
nomial of . We have the extensions F(f)/Q(a)/Q, so deg(f) = [Q(e) : Q]|[F(f) : Q] =
|G(f)], since F(f)/Q is a Galois extension (as a splitting field of an irreducible separable
polynomial). Hence, deg(f)||G(f)|, which tells us more than element orders if deg(f) is
not prime.

P: Galois group product lemma. To deal with the occasional reducible polynomial,*
we consider the structure of the Galois group of a product. Suppose Jp, ¢ € Q[X] non-
constant: f = pg. Let ¢ € G(f). By commuting polynomial evaluation with ¢ (a
restricted Q-automorphism) and noting the injectivity of ¢, we have ¢(Z(p)) = Z(p) and
®(Z(q)) = Z(q). Restricting its domain and range thus yields ¢, € G(p) and ¢, € G(q).
This gives rise to the homomorphism

G(f) = G(pg) — G(p) x G(q), ¢+ (dp, D)

where homomorphism is immediate and injectivity follows because Z(f) = Z(p) U Z(q).
As p and ¢ have lower degrees than f, their Galois groups are contained in much smaller
symmetric groups, so this is a significant simplification.

Moreover, Yo € G(f) ¢ = ¢y, where ¢, € G(f), © — ¢p(z) (if z € Z(p)), = (else)
(similarly for ¢,), because f is separable, whence Z(p) N Z(q) = 0. Hence, G(f) C {ap :
(o, B) € G(p) x G(q)}, and since any &, 3 are disjoint and have the same cycle types as
a, [(respectively), the cycle type of &f3 is their concatenation (as integer partitions), so
we can eliminate elements whose cycle type is not present in G(f).

I: Small index lemma. Suppose n = deg(f) > 5, and G(f) < Alt(Z(f)) = A,. A, is
simple, so its proper subgroups H satisfy % = \An\HAn : H|!> Hence, either G(f) =
AW(Z(f)) or (n—1)! < 2 <|AI(Z(f)) : G(f)|!, whence n < [ALL(Z(f)) : G(f)|, whence
G(f)] < 5

x: 2/n —1/n lemma. The younglings observed a hunched green figure drift into view.
“If a 2, an n — 1, and an n cycle, you see, then the whole of S,,, it is.”

S: Subgroup dossier. Only certain orders of group are permissible for subgroups of Sgeg(f),
and this is sometimes enough to determine the group once options have been narrowed
down sufficiently. Since we are always looking for subgroups of .5,, for some small n € N,
we’'ll content ourselves to use tables that list the possibilities.®

3But, recognising the uncertainty here, we’ll try to use this method as little as possible.

4We'll also presume we can determine reducibility and factorisations, for example by comparing coefficients
and using bounding and divisibility in Q (or Z, via Gauss’s lemma).

5See IB Groups, Rings and Modules for a proof of this fact, which is a novel use of the left coset action.

65; and S7 tables attached.

Q4: Analysis. Let’s get to work. The methods are referred to by code letter as they are
applied, and each paragraph is numbered i according to the polynomial f; it is discussing (in
the order they are presented in the project). First, the easy ones: full symmetric groups.

1 G <5, and |G| >2 (L), so G=5,.
2 G <53, and |G| > lem(2,3,1) =6, so G = Ss.
6 G=95, (%)

13 G = Sg ().

Next, some reducible polynomials. Notice that for any irreducible quadratic polynomial f,

G(f) = Sym(Z(f)), since 2[|G| (N).

8 f has irreducible factorisation” (X? 4+ X — 1)(X? +2X —7),s0 G < C? (P). |G| > 3 (L
— there is at least 1 element of each of 3 cycle types), so |G| =4, so G = C3.

10 f has irreducible factorisation (X?—X?+2X —3)(X?+X —1). Computing decompositions
of the cubic factor, we find:

>>> cycles([-3,2,-1,1],1,2000) [0]
(fo, o, 11, (1, 11, ([3]1]

so its Galois group G < S3 has order > lem(3,2,1) = 6, so is S3. The quadratic has
Galois group = Cy. Hence, G < S5 x Cy (P). |G| > 7 (L — at least 2 elements of type
[0,1,1], 1 of type [1,2], 2 of type [2,0,1], 1 of type [3,1], 1 of type [5]), so |G| = 12,
so G = Sg X CQ.

7 f has irreducible factorisation pg, where p = (X? — X +7) and ¢ = (X? + X + 1).
This time, we need to consider the Galois group concretely to get enough information.
Let Z(p) = {a,b}, Z(q) = {¢,d}. Then G(p) = {1,(a b)} and G(q) = {¢,(c d)}, so
G(f) € {t,(a b),(c d),(a b)(c d)} (P). G contains no element of type [2,1] (M), so
G(f) C{,(ab)(cd)}. |G] >2 (L), soG=C(Ch.

Polynomial 7 shows that irreducibility is necessary in (N) and provides a counterexample
to the conjecture that the embedding G(pq) — G(p) x G(q) in (P) is always an isomorphism.
Manual work shows that, when the splitting fields are constructed in C/Q (algebraically closed),

1 3 1 1
Z(p) =< ==+ =i Z(q) =4 —= =+ =i
w={325v3) z0-{-5+ v}
whence F(f) = F(p) = F(q) = Q(v/3i) 2 Q. Thus, the degeneracy manifests itself as the fact
that (F(p) N F(¢))\Q # 0. We cannot transpose the roots of p or ¢ without permuting the
whole splitting field, which also transposes the roots of the other factor.

Polynomial 7 is also our first application of (F'), which turns out to be very useful. It allows

us to discount elements of particular orders (thus precluding certain prime divisors of G) or
prove that G < Alt(Z(f)) =2 Aaeg(y) (if all cycle types are even).

4 f is irreducible, so 4||G| (N). G < Ay (M), so |G| = 4,12. G has no order 3 or 4 element
(M), so 31 |G| and G % Cy, so G = C3.

12 G < S5, G has no order 2 or 3 element (M) and 5||G| (L), so |G| =5, so G = Cs.

"With monic representatives of the associate classes of irreducibles.

8

If we are not aiming to prove that G(f) is a product of symmetric groups corresponding to
its irreducible factors, we have no way in our toolbox except (M) of obtaining an upper bound
on its size, so we can’t guarantee our deductions. To do this, we could resort to manually
computing splitting fields, or use the fact® that G(f) < Alt(Z(f)) <= Dy is square, where
Dy is the discriminant of f. However, for large deg(f), this is too expensive to do by hand.

Next, we find some full alternating groups; in these examples, the use of (M) could be
replaced by computing discriminants using a computer.

3 GS A3 (M) [G] =3 =[43] (L), s0 G= A3 =Cs.
11 G < A5 (M). |G| > 30 (L), so G = A; (I - else |G| < £ = 12, contradiction).

14 G < A; (M). |G| > 420 (L), so G = A; (I else |G| < & = 360, contradiction).
To find more exotic Galois groups, consulting subgroup lists (S) is fastest.

5 G < S;. G has no order 3 element (M), so |G| =1,2,4,8. |G| > 5 (L — at least 2 elements
of type [0,0,0,1], and 1 of the other 3 types), so |G| =8, so G = Dg (S).

9 G < S5. G has no order 3 element (M), so |G| = 1,2,4,5,8,10,20,40. |G| > 20 (L), so
|G| = 20,40, so G = GA(1,5) (S) (and |G| = 20).°

16 G < S7. G has no order 3,5 element (M), so |G| = 1,2,4,7,8,14, 16, 28,56, 112. 14||G|
(L), so |G| = 14,28,56,112, so G = Dy, (S) (and |G| = 14).

One polynomial remains.

15 fi5 has irreducible factorisation fyfs... Let Z(fy) = {z,y,2} and Z(fs) = {a,b,c,d}.
Then G(f2) = Sym(Z(f2)) and G(f1) = {¢, (a b)(c d),(a c)(bd), (a d)(bc)} (we know that
G(f1)\{¢} consists only of double transpositions, for which these are the only options).
Hence, G(fi5) C {af : (a,B) € G(f2) x G(f4)} (P). G(fi5) contains elements of types
[4,0,1] and [5,1], so {& : « € G(f2)} € G(fi5). It also contains an element of type
[3,2], which must be 3 for some 8 € G(f)\{¢}, w.l.o.g. (a b)(c d). Thus, there are two
possibilities:

{aB: (. 8) € G(f2) x G(fa)} = S5 x CF

e {{@3 (@) € GUR) x {1 (ab)e)} 28 x O

It seems like we’ve taken our methods as far as they’ll go, but cannot distinguish the two.

Q4: Density. Surprisingly enough, when we summarised which cycle types appeared in
decompositions of each polynomial f, we actually lost information. We could also keep the
relative frequency of a given cycle type appearing in decompositions w.r.t. the primes up to
n € N for which the decomposed polynomial is separable. This is implemented as freq(f,n).
With n = 2000, this is the output of freq on the first 4 example polynomials.

1: [0,1]1 [2] 3: [0,0,1] [3]
0.540 0.460 0.679 0.321

2: [1,1] [0,0,1] [3] 4: [0,2] [4]
0.513 0.338 0.149 0.777 0.223

8See theorem 4.7 in Galois Groups as Permutation Groups, Keith Conrad.
9This is the general affine group of degree 1 over Fs.

9

This is a noisy but nonetheless obvious copy of another pattern. Since G(f) is, for the first 4
polynomials, always a full symmetric or alternating group, or has only one cycle type corre-
sponding to each order of an element, it is easy to calculate the proportion of its elements that
have a given cycle type. The results are as follows:

1: [0,1] [2] 3: [0,0,1] [3]
0.500 0.500 0.667 0.333

2: [1,1] [0,0,1] [3] 4: [0,2] [4]
0.500 0.333 0.167 0.750 0.250

Theorem (Tschebotareff Density Theorem). '°
Let f € Z|X]. Let o be a cycle type of an element of Saeg(r). Then as n — oo,

{p € PN [1,n] : the decomposition of f mod p yields o}| R lg € G(f): g has cycle type o
P11, n] G(f)]

The convergence appears to be quite slow; in particular, finding the relative frequencies for
primes up to 100 can give very misleading results (not least because some cycle types are more
likely to not show up at all). This computation is shown below — note that, if we round each
frequency to the nearest multiple of 1/|G|, we would get incorrect results for polynomial 2.
Even taking into account the presence of the type-[3] element, it’s not clear whether there is
one less element of type [1,1] or of type [0,0,1].

1: [0,1]1 [2] 3: [0,0,1] [3]
0.692 0.308 0.720 0.280

2: [1,1] [0,0,1] [3] 4: [0,2] [4]
0.600 0.320 0.080 0.792 0.208

Let’s substantiate the theorem with more empirical evidence from example polynomials f
for which the order distribution of G(f) is easy to calculate (in the case of reducibles, we use
(P) to do this). The first row of data is the empirical result of freq(f,2000); the second is the
order proportion.

6: [0,0,0,1] [1,0,1] [2,1] [0,2] [4]
0.267 0.317 0.257 0.123 0.037
0.250 0.333 0.250 0.125 0.042

7: [0,2] [4]
0.510 0.490
0.500 0.500

8: [0,2] [2,1] [4]
0.263 0.507 0.230
0.250 0.500 0.250

10: [0,1,1] [1,2] [2,0,1] [3,1] [5]
0.173 0.266 0.163 0.336 0.063
0.167 0.250 0.167 0.333 0.083

11: [0,0,0,0,1] [2,0,1] [1,2] [5]
0.403 0.367 0.220 0.010
0.400 0.333 0.250 0.017

10See Techniques for the Computation of Galois Groups, Alexander Hulpke, for a statement and reference.

10

12: [0,0,0,0,1] [5]
0.817 0.183
0.800 0.200

13: [0,0,0,0,0,1] [1,1,1] [0,0,2] [1,0,0,0,1] (0,1,0,1]

0.229 0.203 0.040 0.183 0.093
0.167 0.167 0.056 0.200 0.125
[2,0,0,1] [3,0,1] [2,2] [0,3] [4,1]
0.123 0.066 0.037 0.010 0.017
0.125 0.056 0.063 0.021 0.021

14:. f[(0,0,0,0,0,0,11 [0,2,1] [1,1,0,1] [2,0,0,0,1]1 [1,0,2]
0.300 0.090 0.220 0.230 0.103
0.286 0.083 0.250 0.200 0.111
[(3,2] [4,0,1]

0.033 0.023
0.042 0.028

The data correlates reasonably well. For polynomials 11, 13, 14 (with Galois groups of order
larger than 24), however, we can already see that rounding to the nearest multiple of ﬁ yields
inaccuracies, and indeed, 13 and 14 are missing the cycle type [deg(f)].

This type corresponds only to the identity, and thus has asymptotic frequency ﬁ — the
smallest possible. Hence, it is no surprise that the identity is missing from the decompositions
of the polynomials with the largest groups. We expect it to appear in the decompositions of
the first |G| primes — i.e. for primes up to 5443 (polynomial 13) and 22543 (polynomial 14).!!
This qualitatively goes some way towards justifying the full data assumption (F).

For polynomials f for which it is harder to calculate the distribution of cycle types in G(f)
manually, we estimate them computing decomposition frequencies (again with primes up to
2000) and rounding them to the nearest multiple of |_Cll|

5: [0,0,0,1] [0,2] [2,1] [4]
0.257 0.380 0.260 0.103
0.250 0.376 0.250 0.125

9: [1,0,0,11 [0,0,0,0,1] [1,2] [5]
0.513 0.190 0.243 0.053
0.500 0.200 0.250 0.050

16: [0,0,0,0,0,0,1] [1,3] [7]
0.395 0.548 0.056
0.429 0.571 0.071

The last of these is clearly erroneous since the proportions sum to more than 1... however,
we know the number of order 7 elements is divisible by 6 (partitioning them by the subgroups
they generate), so is 6 or 12. The data suggests it is 6, so we can infer (since there is one
type-[7] element) that there are very likely 7 type-[1,3] elements —i.e. 0.571 should be 0.500.

Finally, what can we say about polynomial 15?12 We have two hypotheses on its isomor-
phism class, and know the cycle type frequencies in both cases. The first two rows of data
below list them. We also have decomposition frequencies for primes up to 2000 (third row).

Tt turns out that the smallest prime that yields it is 4339 for 13 and 60139(!) for 14.
12The polynomial that lived.

11

(0,2,1]1 [1,3] [3,2] [4,0,1] [5,1]1 [7]

83 x C_272: 0.250 0.375 0.125 0.083 0.125 0.042
S3 x C_2: 0.167 0.250 0.083 0.167 0.250 0.083
Predicted: 0.271 0.381 0.127 0.067 0.130 0.023

The choice is clear. Hence, assuming the accuracy of this data, we have determined that
G(f15) = S3 x C2%, which completes the set. To celebrate, here’s a list of the (isomorphism)
classes and orders of the Galois groups of the example polynomials.

i G G| i G G| i G G| i G G|
i Ss 2 5| Dy 8 9 | GA(1,5) 20 131 Ss | 720
2| S 6 6| S 24 10| Sy x Cy | 12 1 A | 2520
3| A 3 7 Cy 2 11| As 60 15 S3x C2 | 24
e 4 8| 2 4 12| Cs 5 16| Dy | 14

A Programs

The programs take the form of three modules: C.py, Poly.py, Galois.py. Program output
printed in the report is generated by functions in Output.py. InitC.py is a script that, when
run in a Python shell, loads all functions into the global memory.

A.1 Documentation

This section summarises the purpose of the project’s more primitive functions.
rf(n): n € Ny. Returns /| N .

primes(m,n): m,n € Z. Yields the next prime number each time it’s called,'® starting from
m and ending at n.

modinv(a,p): p € P, a € Z,. Returns a~! mod p if a # 0.

c(a): a a list. Deletes trailing zeros from a.

pj(a,p): a € Z[X], p € P. Projects a into Z,[X].

add(a,b,p): a,b € Z[X], p € P. Returns a + b projected into Z,[X].
mp(a,b,p): a,b € Z[X], p € P. Returns ab projected into Z,[X].
sc(a,s,p): a € Z[X], s € Z, p € P. Returns sa projected into Z,[X].

Remaining functions: Documented within the report itself.

13 Artist’s impression: http://tinyurl.com/26z6zo.

12

A2 C

def rf(n):
i=1; x =20
while True:
if (x + i) *x%x 2 <= n:
i <<= 1
elif i I= 1:
x += 1 >> 1; i =1
else:
return X

def primes(m,n):
m = max(m,2)
while True:
for r in range(2,rf(m)+1):
ifm% r == 0:
break
else:
yield m
if m > n:
break
else:

def modinv(a,p):
a %h=p
if a == 0: print(’O not,invertible.’); return
x = 1
for i in range(p-2):
X *= a; x h=p
return X

13

A.3 Poly

from C import *
from itertools import zip_longest as zipl

def c(a):
for i in range(len(a)-1,-1,-1):
if ali] == 0: a.pop()
else: break
return a

def pj(a,p):
return c([x % p for x in a])

def add(a,b,p):
return pj ([x[0]1+x[1] for x in zipl(a,b,fillvalue=0)],p)

def mp(a,b,p):
return pj([sum([(aljl*b[i-jl)%p for j in range(i+l) if j<len
(a) and i-j<len(b)]) for i in range(len(a)+len(b)-1)1,p)

def sc(a,s,p):
return pj([s*x for x in al,p)

def div(a,b,p):
if len(b) == 0: print(’Div/0.’); return
t modinv(b[-1],p); b = sc(b,t,p)
n len(a) - len(b)
q = [0 for i in range(n+1)]
while n >= O0:
qln] = a[-1]
a = add(a,sc(([0 for i in range(n)] + sc(b,al-1],p)),-1,
p),p)
n = len(a) - len(b)
return [sc(q,t,p),al

def hcf(a,b,p):
return sc(a,modinv(al-1],p),p) if len(b) == 0 else hcf(b,div
(a,b,p) [1],p)

def exp(a,b,n,p):
mpa = lambda r: div(mp(r,a,p),b,p) [1]

x = [1]

while n I= 0:
if n & 1: x = mpa(x)
a = mpa(a)
n >>= 1

return X

14

A4

Galois

from C import *
from Poly import =

def

def

def

decomp (f,p):

f = pj(f,p)
d = lambda a,p: pj([i*al[i] for i in range(l,len(a))],p)
if len(hcf (f,d(f,p),p)) != 1:
return ’Not,separable.’
a = [0]

for r in range(l,len(f)):
m = add(exp([0,1],f,p**r,p),div([0,p-1]1,f,p) [1],p)
a.append (hcf (f,m,p))
f = div(f,alr],p) [0]

return [(len(al[il])-1)//i for i in range(l,len(a))]

cycles(f,m,n):
x = [0, y =[]
for p in primes(m,n):
a = decomp (f,p)
if a not in x and a != ’Not_separable.’:
x.append(a); y.append(p)
return [[c(t) for t in x],y]

freq(f,n):
x =[], y=1[0; j=0
for p in primes(l,n):
r = decomp (f,p)
if r != ’Not,separable.’:
jo+= 1
if r in x:
y[x.index(r)] += 1
else:
x.append(r); y.append (1)
return [[c(i) for i in x],[round(i/j,3) for i in yl]

15

