17.1

Graph Colouring

Contents

1 The Greedy Algorithm 1
2 The Clique Algorithm 3
3 The Independent Set Algorithm 5
A Programs 6
Introduction

This project is programmed in Python 3.4. Consult section A for program documentation,
listings and information on the structure of the programming for the project, as appropriate.
This report is written in BTEX 2¢.



1 The Greedy Algorithm

Q1. The function Greedy(G, O) runs the greedy algorithm on the graph G using vertex or-
dering O.} As test data, we’ll refer to some example graphs for which manual computations
are simple.

1 — 6 » €
1 2
/ \ / \
2 5 2 5
/
3 4 3 4 3 4
G Gy Gy

Colouring GG; with ordering (1,2, 3,4) yields the colouring (1,1,2,3) (as a function whose do-
main is the vertex set, namely [4]). G with ordering (2,5, 6, 3,4, 1) yields colouring (3, 1,2,2,2,1).
And sure enough, the algorithm yields the following;:

>>> Greedy(G1,[0,1,2,3,4])
(o, 1, 1, 2, 31, 3)

>>> Greedy(G2,[0,2,5,6,3,4,1])
(fo, 3, 1, 2, 2, 2, 11, 3)

The vertex orderings for a graph G described as (i), (ii), (i), (iv) are respectively implemented
as the functions 0rdA(G), OrdB(G), 0rdC(G), 0rdD(G). Testing on G3, we have, as expected:

>>> 0rdA(G3) >>> 0rdC(G3)

(0, 3, 2, 4, 1, 5, 6] [0, 6, 5, 4, 1, 2, 3]
>>> 0rdB(G3) >>> Q0rdD(G3)
(0, 6, 5, 1, 4, 2, 3] (o, 1, 6, 5, 3, 4, 2]

We compare the efficacy of the greedy algorithm powered by these ordering algorithms by
generating ten random graphs from G(70,0.5) and G3(70,0.75), and finding the number of
colours used. Note that the function Graph(n,p, k) generates a random graph from G (n,p)
(where Gy := G). In the following, each row represents a particular random graph from these
spaces.

i ii iii iv i ii iii iv
19 14 16 17 7 3 3 4
18 14 14 18 9 3 3 3
19 15 16 17 8 4 3 3
19 16 16 17 9 3 3 3
18 16 15 16 9 4 3 3
16 15 14 16 6 3 3 6
17 16 14 17 6 4 3 3
18 15 15 16 4 3 3 3
19 15 15 16 5 3 3 3
17 15 14 18 7 3 3 4

Q1a(70,0.5,0) (G)

LCheck [] for a description of how data types are implemented in this project.

Q1a(70,0.75,3) (Gs)
First, we’ll compare general trends that differentiate between the different ordering algo-
rithms. Observe foremost that (i) tends to use more colours than (7v), which in turn tends to



use more than (i) and (73i). To corroborate these observations, here are the mean number of
colours used by each, as well as the proportion of times a given algorithm is optimal among the
four, for a sample of size 10,000.

G i ) ii s iii iv

Mean: 17.69, 15.23, 15.54, 16.48

Optimal: 0.020, 0.762, 0.557, 0.167

G3 i , ii ., idii , div

Mean: 5.66, 3.22, 3.00, 4.05

Optimal: 0.100, 0.813, 1.000, 0.406
Q1b

These two arguments can be explained intuitively. Firstly, we expect (ii) to be better than the
average (represented by (iv)) because they colour the vertices of higher degree earliest, when
few colours have been assigned to any vertex. These vertices thus receive low colours, and later
vertices also receive low colours as they have fewer neighbours. More precisely, we have, for an
ordering of vertices (z;),
X(G) < m[fuﬁ(min(d(ﬂfi) +1,))
1€|l,n

This also suggests why (7) performs worse than average; it colours the vertices of highest degree
last, when there are both many neighbours for each vertex and many colours in use that they

may have already been assigned. Indeed, this ordering typically results in large colours being
expended towards the end, as in this example:

>>> G=Graph(15,0.5,0); 0rdA(G); Greedy(G,0rdA(G))
(o, 12, 13, 15, 4, 1, 6, 9, 5, 7, 10, 11, 14, 8, 3, 2]
(fo, 1, 6, 5, 1, 2, 3, 3, 4, 4, 1, 3, 1, 1, 2, 2], 6)

It may be expected that ordering (i) is an improvement over (i), since it greedily optimises

for each vertex to have the fewest neighbours among those already coloured, and so, denoting
d'(2:) = |D(x;)i24| < min(d(z,), i — 1),

€(6) < max(d(a:) + 1) < max (min(d(a:) + 1,1)

However, it evidently performs worse in the case of G(70,0.5) than (ii). Surprisingly, in the
case of G3(70,0.75), it not only performs better but seems to always find a 3-colouring (which is
likely optimal, noting that graphs in G5(70,0.75) are tripartite, partitioned into cosets modulo
3, but unlikely to be bipartite, as there is likely a 3-cycle between the parts).

However, it sometimes uses more than 3 colours (though examples are rare?); more generally,
it can be seen that none of these orderings on either G(70,0.5) or G3(70,0.75) always produces
an optimal colouring.

Q2. The spaces G(70,0.5) and G5(70,0.75) are comparable in the sense that the expected
number of edges is similar in both. The number of edges in a member is binomially-distributed
with mean the product of the number of edges being tested for inclusion with the probability
of each being accepted — i.e. (720) x 0.5 =1207.5 in G(70,0.5) and ((720) — (224) — 2(223)) x 0.75 =
1224.75, respectively.?

Nonetheless, the members of G3(70,0.75) typically have very different structure to those of
G(70,0.5). They are all tripartite, partitioned into cosets modulo 3, and can thus be 3-coloured

2During my testing, I found it typically took at least 2000 trials before one showed up.
3Hence the choice of p = 0.75.



by the greedy algorithm with ordering a concatenation of listings for each coset — for example,
(1,4,...,67,70,2,5,...,65,68, 3,6, ...,66,69).

Conversely, G3(3n) (n € N) contains graphs for which there exists an ordering that coerces
the greedy algorithm into using n + 2 colours. This is obtained by completing the tripartition
(inserting all edges between vertices in different parts), partitioning the entire vertex set into
3-sets that contain one element from each part, deleting the edges inside each 3-set except one
special one, and colouring each 3-set sequentially, making sure to leave the special one until
last. Or, in a picture (for n = 3):1

2 The Clique Algorithm

Q3. The greedy-type algorithm & on G is unlikely to find a complete subgraph of order 14.

Consider the event A,, = [& returns a complete subgraph of order > n]. For any G € A, &
must have already found a complete subgraph H of order 13, and furthermore, some other vertex
must have been adjacent to every vertex in H (else H would’ve been returned — contradiction).
Hence,

P(A) = P(A;3)P(A]A3) < (2000 — 13) x 0.5" < 0.243 < 0.5

However, the clique number w(G) of G is both likely to be at least and at most 17.

This comes from a standard threshold argument; we quote results from Imre Leader’s
2007 lecture notes, specifically the section Structure of a Random Graph. Let k € N, X :
G(2000,0.5) — Ny, G — |{H < G : H is complete and |H| = k}|. Let p = E(X),
Vi, = Var(X). Via Markov’s and Chebyshev’s inequalities, it follows that

1— e <P(X =0) < Vi/ui

By combinatorics,’

= () = () (250 (0 )

Hence,

1 — 17 < —2.95 < 0.5 Vir/ui, < 0.44 < 0.5
1 — p11g > 0.997 > 0.5 Vis/1is > 394 > 0.5

4With edges in grey and absent edges between parts dotted, and numbers representing the vertex ordering
used by the greedy algorithm.
571l defer to the dear Leader on this one.



So,
P(X15=0)>1— 5 > 0.5 P(X17 = 0) < Vir/pd; < 0.5

k-complete subgraph containment is a decreasing property (in k), so Vk € N P(X; = 0) =
P(w(G) < k —1), and so we have P(w(G) < 17) > 0.5 and P(w(G) > 17) > 0.5. In particular,
the median clique number equals 17.

Q4. The function KS(G, O, k) distinctly enumerates the complete subgraphs (if & = 0) or
independent subsets (if £ = 1) of the graph G in an order determined by vertex listing O. Each
time it’s called, it greedily finds a maximal complete subgraph/independent subset, having
removed and skipped the last vertex it appended last time it was called (if appropriate). For
example G3 with ordering (1,2,3,4,5,6), it’s easy to check that this yields the following listing
of independent sets.

>>> for x in KS(G3 [1, 4] (4, 5, 6]
,00,1,2,3,4,5,6]1,0) [1, 5, 6] [4, 5]
print (x) [1, 5] [4, 6]
(1, 6] [4]
[1, 2, 5] [1] [5, 6]
[1, 2] [2, 5] [5]
[1, 4, 5, 6] [2] [6]
[1, 4, 5] [3, 6] (]
[1, 4, 6] [3]

Likewise, the independent subsets of G with ordering (3,2, 1,4):

for x in KS(G1 [3] [1]
,[0,3,2,1,4]1,1): [2, 1] [4]
print (x) [2, 4] (]

[2]

The function Clique(G, O, k) uses KS to find a clique (k = 0) or largest independent set
(k=1) in G according to O.% Let’s test it out on the previous random graph spaces.

i ii  iii iv Clique i ii  iii iv Clique
17 15 15 16 8 5 4 3 4 3
18 14 15 16 9 6 3 3 6 3
18 16 16 17 9 4 3 3 4 3
17 15 16 17 8 4 3 3 4 3
17 16 14 15 8 6 3 3 5 3
18 15 15 16 9 6 3 3 4 3
18 15 16 16 9 3 3 3 8 3
18 15 16 17 8 12 3 3 4 3
18 15 16 17 8 3 3 3 3 3
17 14 17 18 8 4 3 3 5 3

Q4(70,0.5,0) (G(70,0.5)) Q4(70,0.75,3) (G5(70,0.75))

As expected, the (exact) clique numbers w(G) computed don’t give much information on
the colouring numbers x(G). As a sanity check, it is corroborated that w(G) < x(G) in all
cases. But this inequality may be strict, and the upper bounds on x(G) given by the greedy
algorithm may not be tight. For Gi(n,p) (k € N), w(G) < x(G) < k. In the case k = 3 (and
sufficiently high p), there is likely to be a 3-cycle, whence w(G) = 3.

6The size of the subset will obviously be independent of O.

4



3 The Independent Set Algorithm

Q5. This algorithm is implemented as IndCol(G, O), colouring a graph G w.r.t. vertex or-
dering O (which influences the decomposition into independent subsets). Here is some data. G
represents the greedy algorithm, I represents the independent set algorithm, and the Roman
numerals index the ordering algorithms as before — we’ll focus on (%i) and (%ii) because they
tend to use fewer colours, also when used with I.

Gii Giii Cliq. Iii Tiii Gii Giii Cliq. Iii Tiii
15 15 9 15 14 13 12 7 7 7
15 16 9 14 14 9 13 7 8 8
14 14 8 14 14 13 11 7 7 7
16 15 8 14 14 14 12 7 7 8
15 15 8 14 14 13 12 7 7 7
15 16 8 14 13 12 13 7 8 7
16 16 8 13 14 13 13 7 9 9
15 16 8 13 15 13 13 7 7 7
16 15 8 13 14 11 12 7 8 8
16 16 9 13 13 12 12 7 7 7
Q5(70,0.5,0) Q5(70,0.5,7)

For all but one test case, the new algorithm has yielded a more frugal, yet invariably slower,
colouring. The improvement is significant in the G(n,p) case. Intuitively, since the parts of
the partition into cosets modulo p are independent sets, the algorithm will find sets at least as
large at each step, which are likely to comprise significant parts of particular cosets if p is high
(and other potential independent sets are thus forbidden). Nevertheless, missing edges between
parts lead to imperfections and can inflate the number of colours used. Thus, we would predict
that, for G(n, p), the colourings should become more frugal as p increases despite the presence
of more edges. And sure enough, that is what happens.

Gii Giii Cliq. Iii Tiii Gii Giii Cliq. Iii Tiii
11 12 7 10 10 8 7 7 7 7
11 11 6 10 10 13 10 7 7 7
10 11 6 9 7 14 12 7 7 7
12 11 6 8 9 11 13 7 7 7
11 10 6 10 9 13 10 7 7 8
11 11 6 9 10 14 11 7 7 7
11 12 6 8 9 14 15 7 8 7
11 11 7 8 10 14 14 7 7 7
10 11 6 9 8 15 7 7 7 7
10 10 6 9 9 13 12 7 7 7
Q5(70,0.4,7) Q5(70,0.6,7)

For our G(n,p) graphs, which generally lack the structure of a partition into large indepen-
dent sets, the number of colours used is, as usual, positively correlated with (edge) size.



Gii Giii Cliq. Iii Tiii Gii Giii Cliq. Iii Tiii

13 13 7 12 12 18 19 10 16 16
13 13 7 11 11 18 19 10 16 17
12 12 7 11 11 18 19 10 16 16
14 13 7 12 12 19 19 11 16 16
13 13 7 12 11 20 18 10 18 16
12 13 7 10 11 18 18 10 17 17
13 13 7 11 12 18 20 10 16 17
13 13 7 12 11 19 19 10 18 16
13 13 7 12 11 19 19 10 17 17
12 13 6 12 11 19 18 10 17 16
Q5(70,0.4,0) Q5(70,0.6,0)

Q6. The most naive graph colouring procedure would test out every possible function V(G) —
[1,k] (k € N) to check if it’s a valid colouring (using a lexicographical ordering w.r.t. some
vertex listing), incrementing k if it has exhausted all functions (starting with £ = 1). Once a
valid colouring is found, it must be optimal, else it would’ve been discovered earlier.

A Programs

All functions are stored in D.py. Program output printed in the report is generated by functions
i Output.py, as annotated throughout the report. InitD.py is a script that, when run in a
Python shell, loads all functions into the global memory.



import random as r

def Graph(n,p,k):
G = [[] for i in range(n+1)]
for i in range(l,n+1):
for j in range(i+1l,n+1):
if k == 0 or (i - j) % k != 0:
if r.random() <= p:
G[i].append(j)
G[j]l.append (i)
return G

def deg(G):
return [len(g) for g in GJ]

def OrdA(G):

D deg (G)
0 = [1i for i in range(len(D))]
d =0; 1-=1
while True:

for i in range(l,len(D)):

if D[i] != d:
1l = 1i; break

else:
return O
for i in range(l,len(D)):

if D[i] ==
D[i],D[1] = D[1],D[1i]
0[i]l,0[1] = 0[1]1,0T[4il
1 += 1; break
else:
d += 1

def 0rdB(G):
return [0] + 0OrdA(G)[:0:-1]

def 0rdC(G):
G = 1list(G); 0 = [0]
D [len(G)] + [0 for i in range(l,len(G))]
for n in range(l,len(G)):

E = deg(G)
D = [D[i] if D[i] == len(G) else E[i] for i in range(len
(G))]

m = min(range(len(D)) ,key=D.__getitem__)
0.append (m)
G = [[1 for i in g if i != m] for g in G]
G[m] = []
D[m] = len(G)

return [0] + 0[:0:-1]



def 0rdD(G):
0 = [i for i in range(1l,len(G))]
r.shuffle (0)
return [0] + O

def Greedy(G,0):
C = [0 for i in range(len(G))]; m = 1
for i in 0O[1:]:
N = [C[j] for j in G[i]]
c =1
while True:
if ¢ in N: ¢ += 1
else: break
cli] = ¢
if ¢ >m: m = ¢
return C,m

def KS(G,0,k):
K=1; a=1
try:
while True:
for i in range(a,len(0)):

g = G[O[il]
for j in K:
if (0[j] in g) == k: break

else: K.append (i)
yield [0[i] for i in K]
a = K.pop() + 1
except IndexError:
return

def Clique(G,0,k):
H = []
for K in KS(G,0,k):
if len(H) < len(K): H = 1list(K)
return H, len (H)

def IndCol(G,0):
G = 1ist(G); 0 = 1ist(0); C = [0 for g in G]; c =
while len(0) != 1:
c += 1
A = Clique(G,0,1) [0]
for a in A:

Clal = ¢
G = [[i for i in g if i != a] for g in GJ]
Glal] = []

0. remove (a)
return C,c



