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1 Introduction

This project is programmed in MATLAB R2014a. Consult section A for program documenta-
tion, listings and information on the structure of the programming for the project. This report is
written in LATEX 2ε.
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2 Analytic Solutions

Q1. The function F (x, t) ≡ θ(x,t)−θ0
θ1−θ0 satisfies the diffusion equation on (x, t) ∈ (0,∞)2:

Ft(x, t) =
θt(x, t)

θ1 − θ0
= α

θxx(x, t)

θ1 − θ0
= αFxx(x, t)

The initial and boundary conditions on θ are equivalent to conditions on F : ∀x ∈ (0,∞), ∀t > 0

θ(x, 0) = θ0 ⇐⇒ F (x, 0) = 0

θ(0, t) = θ1 ⇐⇒ F (0, t) = 1

lim
x→∞

θ(x, t) = θ0 ⇐⇒ lim
x→∞

F (x, t) = 0

lim
x→∞

θx(x, t) = 0 ⇐⇒ lim
x→∞

Fx(x, t) = 0

Hence, the diffusion equation can be solved for F , in a form that is independent of θ0 and θ1.
F (x, t) depends on the physical quantities x, t, α of dimension L, T , L2T−1 respectively. As a
consequence of Bridgman’s theorem1, as F is dimensionless (being a ratio of temperatures), it can
be expressed as a function of any basis of dimensionless parameters of the system, whose kernel
consists of the solutions to

[x]a[t]b[α]c = La+2cT b−c = 1

The corresponding linear system a + 2c = b− c = 0 has kernel spanned by (a, b, c) =
(
1, 1

2
, 1
2

)
, so

the dimensionless parameters have basis ξ = xt−
1
2α−

1
2 . Thus, ∃f : F (x, t) ≡ f(ξ). Substituting

into the diffusion equation,

∂

∂t
f(ξ) = α

∂2

∂x2
f(ξ) =⇒ f ′(ξ)

∂ξ

∂t
= α

∂

∂x

(
f ′(ξ)

∂ξ

∂x

)
= αf ′(ξ)

∂2ξ

∂x2
+ αf ′′(ξ)

(
∂ξ

∂x

)2

Since ∂ξ
∂t

= − x

2
√
αt3

, ∂ξ
∂x

= 1√
αt

, and ∂2ξ
∂x2

= 0,

− f ′(ξ)

2
√
αt3

=
αf ′′(ξ)

αt
=⇒ f ′′(ξ) +

1

2
ξf ′(ξ) = 0 =⇒ d

dt

(
e(

ξ
2)

2

f ′(ξ)
)

= 0 =⇒ f ′(ξ) = Ae−( ξ2)
2

=⇒ f(ξ) = A

∫ ξ

0

e−( t2)
2

dt+B = 2A

∫ ξ
2

0

e−u
2

du+B = A′
∫ ∞
ξ
2

e−u
2

du+B′

The initial and boundary conditions yield the following:
F (x, 0) = 0 =⇒ f(∞) = 0, so B′ = 0. F (0, t) = 1 =⇒ f(0) = 1, so A′ = 2√

π
.

Note that either of the unused boundary conditions is consistent: F (∞, t) = 0 =⇒ f(∞) = 0

and Fx(∞, t) = 0 =⇒ limξ→∞
f ′(ξ)√
αt

= limξ→∞
A√
αt
e−( ξ2)

2

= 0 = 0 (a tautology).
Thus,

f(ξ) =
2√
π

∫ ∞
ξ
2

e−u
2

du

1See, for example, http://www.archim.org.uk/lecturenotes/ia/dynamics.pdf (sections 1.2.3 and 1.2.5; access
date: 26/4/2015); Bridgman’s theorem states that any physical variable can be expressed in the form C(θi)

∏
Xj ,

where {Xj} is a set of physical variables of distinct dimensions that the system depends on, and {θi} is a basis of
dimensionless quantities. It essentially follows from the fact that any other relationship would involve the summation
of dimensionally-distinct variables (considering, for example, Taylor expansions of functions), which is forbidden.
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Q2: First Problem. Take, as an initial ansatz, a function S(X) dependent only on X that
solves (10)–(12) (i.e. the PDE subject to the boundary conditions). (11) and (12) then imply
S(0) = 1 and S(1) = 0, whence Ṡ(X) ≡ 0 ≡ S ′′(X) ≡ AX + B, A,B ∈ R, so by the BCs,
S(X) ≡ 1−X is a solution to this problem.2

Hence, a function U(X,T ) solves the original problem ((10)–(13)) iff the function V (X,T ) ≡
U(X,T )− S(X) solves the following, transformed problem ∀X ∈ (0, 1), ∀T ∈ (0,∞)

VT (X,T ) ≡ VXX(X,T ) (O)

V (X, 0) ≡ X − 1 (A)

V (0, T ) ≡ 0 (B)

V (1, T ) ≡ 0 (C)

Hence, we can proceed by finding a solution to this problem. Suppose, as a second ansatz, a
non-zero function V (X,T ) ≡ ξ(X)τ(T ) satisfying (O) subject to BCs (B) and (C), which imply

ξ(0) = ξ(1) = 0. Then − ξ′′(X)
ξ(X)

≡ −
˙τ(T )

τ(T )
≡ λ ∈ R.

Solving firstly for ξ,
ξ′′(X) + λξ(X) ≡ 0 (1)

Suppose λ ≤ 0. Then ξ(X) ≡ Ae
√
−λX+Be−

√
−λX . ξ(0) = A+B = 0, so ξ(1) = A

(
e
√
−λ − e−

√
−λ
)

=

0, so A = B = 0 (a contradiction). Similarly, λ = 0 =⇒ ξ(X) ≡ AX +B =⇒ B = 0 ∧ A+B =
0 =⇒ A = B = 0 (a contradiction). Thus, λ ≥ 0, whence

ξ(X) ≡ A sin(
√
λX) +B cos(

√
λX)

ξ(0) = B = 0, so ξ(1) = A sin(
√
λ) = 0, so λ = n2π2, n ∈ N, so

ξ(X) ≡ A sin(nπX), n ∈ N

Solving secondly for τ , τ̇(T ) + λτ(T ), so τ(T ) ≡ Ce−n
2π2T . Thus, ∀n ∈ N, a solution to (O),

(B), (C) is

V (X,T ) ≡ De−n
2π2T sin(nπX)

By linearity of (O), (B), (C), a more general solution to this problem is

V (X,T ) ≡
∞∑
n=1

ane
−n2π2T sin(nπX)

Imposing (A), a solution to the transformed problem can be obtained. Thus, suppose

V (X, 0) ≡
∞∑
n=1

an sin(nπX) ≡ X − 1

Let n ∈ N. Equation (1) is the eigenvalue equation for the Sturm-Liouville operator L(ξ) =
(pξ′)′ = ξ′′ (with p(x) ≡ 1), which is self-adjoint on [0, 1] (as, for any two solutions ξ1, ξ2,[
p(x) det

(
ξ1(x) ξ2(x)
ξ′1(x) ξ′2(x)

)]1
0

= 0). Thus, its eigenfunctions {sin(nπX)}∞n=1 are orthogonal, so

an

∫ 1

0

sin(nπt)2dt =
1

2
an =

∫ 1

0

(t− 1) sin(nπt)dt =
1

nπ

2It follows from this argument that any solution must have this form, but it is easy to check that it is indeed a
solution.
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Thus, a solution is V (X,T ) ≡ −
∑∞

n=1
2
nπ
e−n

2π2T sin(nπX), so the original problem is solved by

U(X,T ) ≡ 1−X −
∞∑
n=1

2

nπ
e−n

2π2T sin(nπX)

Q2: Second Problem. The second problem can be solved similarly. The same transformation
(via the initial ansatz, which the BCs determine as S(X) ≡ 1) yields the transformed problem

VT (X,T ) ≡ VXX(X,T )

V (X, 0) ≡ −1

V (0, T ) ≡ 0

VX(1, T ) ≡ 0

In terms of the second (separated) ansatz, the boundary conditions become ξ(0) = ξ′(1) = 0,
whence λ > 0 (checking as before), whence ξ(0) = B = 0, so ξ′(1) = A

√
λ cos(

√
λ) = 0, so

λ =
(
n− 1

2

)2
π2, n ∈ N, so

ξ(X) ≡ A sin

((
n− 1

2

)
πX

)
and

V (X,T ) = e−(n− 1
2)

2
π2T sin

((
n− 1

2

)
πX

)
A solution to the transformed problem is hence

V (X,T ) =
∞∑
n=1

bne
−(n− 1

2)
2
π2T sin

((
n− 1

2

)
πX

)
subject to

∞∑
n=1

bn sin

((
n− 1

2

)
πX

)
= −1

The new boundary conditions on the separated ansatz satisfy the self-adjointness condition (for
the same Sturm-Liouville operator on [0, 1]), so each eigenfunction is orthogonal, whence

bn

∫ 1

0

sin

((
n− 1

2

)
πt

)2

dt =
1

2
bn =

∫ 1

0

− sin

((
n− 1

2

)
πt

)
dt = − 1(

n− 1
2

)
π

Thus, a solution to the original second problem is

U(X,T ) ≡ 1−
∞∑
n=1

2(
n− 1

2

)
π
e−(n− 1

2)
2
π2T sin

((
n− 1

2

)
πX

)
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Q2: Comparisons. Here are comparisons of the three solutions to the diffusion equation (plot-
ted on the y-axis), evaluated on X ∈ [0, 1] (plotted on the x-axis) at times T > 0 using series
summation or erfc, where appropriate. Analysis follows on the next page.

X U1(X,T ) U2(X,T ) F (X,T )

0.0 1.0000000 1.0000000 1.0000000
0.1 0.8726029 0.8761313 0.8743671
0.2 0.7479073 0.7557519 0.7518296
0.3 0.6283430 0.6421696 0.6352563
0.4 0.5158250 0.5383535 0.5270893
0.5 0.4115664 0.4468241 0.4291953
0.6 0.3159643 0.3695989 0.3427817
0.7 0.2285685 0.3081944 0.2683816
0.8 0.1481328 0.2636728 0.2059032
0.9 0.0727422 0.2367138 0.1547289
1.0 -0.0000000 0.2276884 0.1138463

(a) T = 0.2
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Finite (fixed)
Finite (insulated)
Semi−Infinite

(b) T = 0.05
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(c) T = 0.2
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(d) T = 0.4
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(e) T = 1.0
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(f) T = 1.6

Figure 1: Solutions to the diffusion equation.
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Here again are the analytic forms of the three solutions being studied, respectively semi-infinite,
fixed finite and insulated finite.

F (X,T ) =
2√
π

∫ ∞
X

2
√
T

e−u
2

du

U1(X,T ) =1−X −
∞∑
n=1

2

nπ
e−n

2π2T sin(nπX)

U2(X,T ) =1−
∞∑
n=1

2(
n− 1

2

)
π
e−(n− 1

2)
2
π2T sin

((
n− 1

2

)
πX

)
The number of terms summed, n = 400, was chosen heuristically by plotting each equation, at
various values of T ∈ (0, 2], with different, exponentially-increasing values of n simultaneously to
determine values that render the curves almost indistinguishable.

As an initial sanity check, it is clear that the boundary conditions are indeed satisfied
by the solutions. At all times, each one is fixed at 1 at X = 0, and at X = 1, U1 is fixed at 0,
the slope of U2 is 0 and F , which is defined beyond X = 1, appears to converge to 0 as X → ∞.
Likewise, the pointwise limit as T → 0 appears to be 0 on X ∈ (0, 1).

Moreover, the functions become very (uniformly) close to each other as T → 0, even
at T = 0.05. The change in temperature w.r.t. time at each point is determined by temperatures
in the neighbourhood of each point in space, which are initially zero away from X = 0. Each
physical situation is the same near X = 0, so it is expected that the functions behave similarly for
small times, before the influence of higher temperatures has spread far rightward.

At all times, each function is convexly decreasing w.r.t. X. The monotonicity mimicks the
initial condition because it is preserved in time – the temperature at each point tends to average
out the temperatures on either side of their neighbourhoods, since, from the definition of UXX ,

UT (X,T ) = UXX(X,T ) = lim
h→0

2

h2

(
U(X + h) + U(X − h)

2
− U(X,T )

)
(2)

This also means that the temperature at each point in space is always increasing with
time, in each case. In fact, as T →∞, the three solutions behave differently:

• U1 achieves a local averaging of temperature subject to fixed temperatures at the endpoints
X = 0, 1, which leads to the linear steady state evidenced in later times.

• U2 represents a system insulated at X = 1, where the system seeks to match the temperature
immediately to the left of it. Hence, the temperature everywhere tends to match the fixed
temperature at X = 0, namely 1.

• F similarly tends to match the fixed temperature of 1, but is nowhere insulated, so the
influence of increasing temperature spreads out towards infinity. Hence, at each finite time,
the temperature approaches 0 as X → ∞, though there is pointwise convergence with time
to 1 everywhere in space.

A final interesting feature of the graphs is that they respect a uniform ordering ∀X ∈
[0, 1] ∀T ∈ [0,∞) U1(X,T ) ≤ F (X,T ) ≤ U2(X,T ). Intuitively, a low fixed temperature of
0 at X = 1 means that U1 loses heat more quickly than the others, while insulation at X = 1
means that U2 retains more heat in the region [0, 1] than F , which loses heat past X = 1. Thus,
the average temperature on the region [0, 1] is ordered as above, and as the functions converge
towards their local averages, this ordering is respected at each point as well.
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3 Numerical Solutions

Q3: Overview. An instance of the numerical scheme, implemented as A.Y, is tabulated below.
The script Q3 provides an interface to this function, designed to tabulate the scheme for the values
of N , C, and T suggested; in each case, δt = C

N2 exactly divides 0.4, which generates multiples
of T . For cases where this division is inexact, the values output by the script do not correspond
exactly to the suggested values of T .

Note that the condition ∀m ≥ 0 Um
N−1 = UN+1 can be used to specify the boundary condition

UX(1, T ) ≡ 0 because it approximates the derivative UX as a tangent of slope 0 between the points
(1 − δX, T ) and the constructed point (1 + δX, T ). This is an instance of the method of images,
whereby a boundary condition is represented by a symmetrical extension of the function (onto the
domain [0, 1 + δX]). By (2), U(1, T ) approximately converges with time towards the average of
Um
N−1 and Um

N+1, i.e. towards Um
N−1, which gives a derivative at Um

N of approximately zero by the
mean value theorem and smoothness.

The following tables (produced by Q3) compare the numerical scheme with N = 5 and C = 1
2

to the analytic solution. The rows and columns represent different values of T and X, respectively.

0 0.2 0.4 0.6 0.8 1

0.4 1 0.8533726 0.7207522 0.6161461 0.5481968 0.5255470
0.8 1 0.9462581 0.8976481 0.8593019 0.8343911 0.8260876
1.2 1 0.9803012 0.9624835 0.9484279 0.9392970 0.9362534
1.6 1 0.9927795 0.9862485 0.9810965 0.9777497 0.9766340
2.0 1 0.9973534 0.9949595 0.9930710 0.9918443 0.9914353

Table 1: The numerical solutions.

0 0.2 0.4 0.6 0.8 1

0.4 1 0.8533095 0.7210126 0.6160657 0.5487142 0.5255125
0.8 1 0.9453450 0.8960401 0.8569115 0.8317894 0.8231329
1.2 1 0.9796297 0.9612533 0.9466698 0.9373066 0.9340802
1.6 1 0.9924078 0.9855588 0.9801234 0.9766337 0.9754312
2.0 1 0.9971703 0.9946177 0.9925918 0.9912912 0.9908430

Table 2: The corresponding analytical solutions.

0 0.2 0.4 0.6 0.8 1

0.4 0 -0.0000631 0.0002604 -0.0000804 0.0005174 -0.0000345
0.8 0 -0.0009131 -0.0016080 -0.0023904 -0.0026018 -0.0029547
1.2 0 -0.0006715 -0.0012302 -0.0017581 -0.0019904 -0.0021732
1.6 0 -0.0003717 -0.0006897 -0.0009731 -0.0011160 -0.0012029
2.0 0 -0.0001830 -0.0003418 -0.0004792 -0.0005531 -0.0005923

Table 3: The corresponding errors.
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Q3: Empirical stability and accuracy. Denote the numerical approximation to U2 as Y , with
error E. For the remainder of the project, three scripts Q3a, Q3b, Q3c were used with parameters
varied between runs.3

As a starting point, one can plot the absolute error4 of Y for different values of N and C.
Plotting against X (with Q3a) for simplicity, it is immediately clear that the Courant number
C = 2

3
gives an unstable scheme, with errors growing far beyond analytical values (see figure 2).

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4
x 10

155

X

E

 

 

0.083333
0.16667
0.33333
0.5
0.66667

Figure 2: Instability of C = 2
3
; various values of C with N = 20, T = 1.2.

This behaviour is typical for different fixed settings of N and T , so the case C = 2
3

may be
discarded. Comparing the remaining cases, the numerical scheme is manifestly stable, with errors
smaller than 3×103 uniformly across X in the worst of the suggested cases (namely C = 1

2
, N = 5,

T = 0/08). Qualitatively, however, T = 0.4 differs from the remaining values of T (see figure 3a).
Indeed, excluding T = 0.4, the curves for fixed Courant numbers at fixed N , T are very similar

in shape (see figure 3b for an example), with the clear trend that increasing N or T leads to
a decrease in the maximum error across X.5 This suggests that it is worth distinguishing only
between Courant numbers in the following analyses of the order of accuracy of the scheme (and
fixing the remaining variables).

Hence, we may consider the order of accuracy when varying X, as suggested by the improving
accuracy with increasing N (i.e. decreasing δX) in the previous study. Thus, we plot, logarithm
against logarithm, the absolute value of the absolute error against δX (with Q3b). In fact, with
the case T = 0.4 excluded, evidence uniformly indicates (fixing various values of (X,T )) the order
of accuracy of the scheme. For a unanimously typical example, see figure 4a.

Across a sample of three points, there is for each Courant number a very precise linear corre-
lation6 whose gradient is always (very close to) 4 in the case C = 1

6
and 2 in the remaining cases

3As before, exact division ensures the fidelity of the output for the suggested values. The range of T -values can
in fact be extended to include multiples of 0.08 while maintaining exactness.

4As distinct from the absolute value of the absolute error.
5This claim is easy to check but, for the interested, evidence is provided in the supplementary image P3a.png.
6Check this using, e.g., MATLAB’s Basic Fitting plot tool.
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(a) T = 0.4 (an atypical case).
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(b) T = 1.2 (a typical case).

Figure 3: Various values of C with N = 20 and two choices of T .
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(a) W.r.t. X.
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(b) W.r.t. T .

Figure 4: Order of accuracy in both variables, with various valued of C sampled at (X,T ) = (1, 1.2).

C = 1
12
, 1
3
, 1
2
. A similar study with δT replacing δX for various values of C (with Q3c, again fixing

(X,T ) and varying N to attain a sample of values of δT ) yields the same behaviour with the same
degree of unanimity, this time with gradients 2 in the case C = 1

6
and 1 in the remaining cases

(see figure 4b).
Hence, it follows7 with reasonable certainty8 that the numerical scheme has orders of accuracy

O((δX)4), O((δT )2) in the case C = 1
6

and O((δX)2), O(δT ) in the other stable cases of Courant
number. A striking consequence of this is that the X-order is always twice the T -order, paralleling

7Modelling with a linear regression, we have log(E) = m log(δX) + c, where m is the gradient, whence |E| =
ec(δX)m, that is, E = O((δX)m). The accuracy of the scheme relative to X (T ) is taken to be the order of the
error E relative to δX (δT ), fixing a point (X,T ) and a change δT (δX).

8Each sample is small, consisting of three points, but is corroborated by the quality of the linear correlation and
the unanimity across various values of (X,T ).
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the orders of their respective partial derivatives, and indeed that, excluding one resonant case, the
orders are precisely those of the partial derivatives.

Q3: Theoretical stability and accuracy. This numerical scheme is known as the Forward-
Time Central-Space (FTCS) finite-difference method, typically used to solve the diffusion equation
and other parabolic PDEs. Theoretically, it is predicted that the scheme is stable iff the Courant
number satisfies C ≤ 1

2
, which is corroborated by the evidence. Furthermore, the general accuracy

is indeed theoretically first-order in time and second-order in space.9

9See, for example, http://web.stanford.edu/˜acolavin/files/finite difference.pdf (section 2 for the general ac-
curacy of finite-difference methods, section 4 for the stability with FTCS as a worked example; access date:
28/04/2015), for more information and derivations.
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A Programs

The programs take the form of a module, A.m, which provides methods for the project, and five
scripts, Q*.m, which use these methods to generate output for each question. These depend on
two auxiliary, unlisted scripts that process output and are based on scripts from the internet:

tabler(L,d,f): Appends the table at global variable T in LATEX-format to the file L.pdf with
heading d and formatting f, specified as a cell array of statements in MATLAB fprintf format.

grapher(P): Writes the figure at global variable G in pdf-format to the file P.pdf.

A.1 Documentation

This section describes the purpose of the project’s functions.

A.F(x,t): Evaluates the semi-infinite solution at (x,t).

A.U1(x,t,n): Sums n terms of the finite fixed solution at (x,t).

A.U2(x,t,n): Sums n terms of the finite insulated solution at (x,t).

A.Y(N,C,S): Returns an (N + 1) × (S + 1) carpet generated by the numerical scheme (including
initial and boundary values), with N X-steps, S T -steps and Courant number C.

A.2 A

classdef A

methods(Static)

function y = F(x,t)

y = erfc (0.5*x/sqrt(t));

end

function y = U1(x,t,n)

s = @(i) (2/(i*pi)) * exp(-t*(i*pi)^2) * sin(i*pi*x);

y = 1-x - sum(arrayfun(s,1:n));

end

function y = U2(x,t,n)

s = @(i) (2/((i-0.5)*pi)) * exp(-t*((i-0.5)*pi)^2) * sin

((i-0.5)*pi*x);

y = 1 - sum(arrayfun(s,1:n));

end

function y = Y(N,C,S)

y = zeros(N+1,S+1); y(1,:) = 1; y(:,1) = 0; y(1,1) = 0.5;

for j = 2:S+1

for i = 2:N

y(i,j) = y(i,j-1) + C*(y(i+1,j-1) - 2*y(i,j-1) +

y(i-1,j-1));

end

y(N+1,j) = (1-2*C)*y(N+1,j-1) + 2*C*y(N,j-1);

end

end end

end
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A.3 Q2

t = 0.2; x = (0:0.1:1) ’; n = 400;

tu1 = @(r) A.U1(r,t,n); U1 = arrayfun(tu1 ,x);

tu2 = @(r) A.U2(r,t,n); U2 = arrayfun(tu2 ,x);

tf = @(r) A.F(r,t); F = arrayfun(tf,x);

T = table(x, U1, U2 , F)

tabler(’L2’,’’,{’%2.1f’,1,’%8.7f’ ,3})

for t = [0.05, 0.2, 0.4, 1, 1.6];

tu1 = @(r) A.U1(r,t,n);

tu2 = @(r) A.U2(r,t,n);

tf = @(r) A.F(r,t);

G = figure; clf; hold all; grid on

fplot(tu1 ,0:1); fplot(tu2 ,0:1); fplot(tf ,0:1);

legend(’Finite (fixed)’,’Finite (insulated)’,’Semi-

Infinite ’,’Location ’,’SouthWest ’);

grapher(strcat(’P2-’,num2str(t*100)))

end

A.4 Q3

N = 5; C = 1/2; n = 400;

dt = C/N^2;

frmt = {’%1.0f’,1,’%8.7f’ ,5};

[x,t] = meshgrid (0:1/N:1 ,0:0.4:2);

f = @(x,t) A.U2(x,t,n); Y = arrayfun(f,x,t) % Exact

T = Y; tabler(’L3a’,’y’,frmt);

yr = A.Y(N,C,round (2/dt))’; y = []; % Numerical

for i = 0:5

y = [y;yr(1+i*round (0.4/dt) ,:)];

end

y

T = y; tabler(’L3a’,’Y’,frmt);

e = Y - y % Error

T = e; tabler(’L3a’,’e’,frmt);
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A.5 Q3a

N = 20; T = 0.4; n = 400;

G = figure; clf; hold all; grid on; l = {};

for C = [1/12, 1/6, 1/3, 1/2]

dt = C/N^2; S = T/dt; S = round(S);

x = 0:1/N:1;

u = @(r) A.U2(r,T,n); y = arrayfun(u,x);

Y = A.Y(N,C,S); Y = Y(:,S+1) ’;

e = (Y - y);

plot(x,e)

l = [l, num2str(C)];

end

legend(l,’Location ’,’southwest ’); ylabel(’E’); xlabel(’X’)

grapher(’P3aii’)

A.6 Q3b

X = 1; T = 1.2; n = 400;

U = A.U2(X,T,n);

dx = 1./[5, 10, 20];

G = figure; clf; hold all; grid on; l = {};

for C = [1/12 ,1/6 ,1/3 ,1/2]

E = [];

for N = [5, 10, 20]

dt = C/N^2; S = T/dt; S = round(S);

B = A.Y(N,C,S);

Y = B(1+ round(X*N),end);

e = Y - U;

E = [E,e];

end

plot(log(dx),log(abs(E)))

l = [l, num2str(C)];

end

legend(l,’Location ’,’southeast ’); ylabel(’ln|E|’); xlabel(’ln

|\ deltaX|’)

grapher(’P3b’)

Q3c is a slight modification of Q3b, converting a sample parametrised by N into a sample of δT ,
this time depending on C.
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