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1 Introduction

This project is programmed in MATLAB R2014a. Consult section A for program documenta-
tion, listings and information on the structure of the programming for the project. This report is
written in LATEX 2ε.
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2 The Exponential Distribution

Q1. Fixing θ ∈ (0,∞), the rate of the distribution, the distribution function Fθ : [0,∞)→ [0, 1)
is a bijection. The median is thus m(θ) = F−1

θ (1/2):

Fθ(m) = 1− e−θx =
1

2
=⇒ m(θ) =

ln(2)

θ

The function m : (0,∞)→ (0,∞), θ 7→ m(θ) is thus also a bijection, so has inverse

θ(m) =
ln(2)

m

expressing the rate of the distribution in terms of its median. Hence, ∀m ∈ (0,∞)

f (x|θ(m)) = θ(m)e−θ(m)x =
ln(2)

m
2−

x
m

Q2. The distribution being sampled from has median m0 = ln(2)/1.2 = 0.5776. The following is
a sample {xi}6

i=1 of size 6 output by A.E:

0.1417 1.6122 0.8625 0.3934 0.1766 0.4659

The log likelihood of the median estimated from this sample, `
(
m| {xi}6

i=1

)
, is plotted below:
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Figure 1: Likelihood of the median of a sample of size 6.

The maximum of the log likelihood provides an estimate for the median of the distribution.
It can in fact be derived analytically, as follows. Given a sample {xi}ni=1 from the exponential
distribution with median m0, the log likelihood function ` (·| {xi}ni=1) : (0,∞)→ R takes the form:

`(m) =
n∑
i=1

ln (f (xi|θ(m))) =
n∑
i=1

ln

(
ln(2)

m
e

−xi ln(2)
m

)
= n

(
ln2 (2)− ln (m)− ln(2)

m
x

)
(1)
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It is smooth on (0,∞), with first and second derivatives:

`′ (m) = n

(
− 1

m
+

ln(2)

m2
x

)
`′′ (m) =

n

m2

(
1− 2 ln(2)

m
x

)
Now, `′ (m) = 0 ⇐⇒ m = ln(2)x and `′′ (ln(2)x) = n

ln(2)2x2
(1− 2) = − n

ln(2)2x2
< 0,1 so

ln(2)x is the unique preimage of the global maximum of the function. Thus, m̂ = ln(2)x. Indeed,
treating this median estimator as a random variable M̂ defined in terms of the sample mean X,
E(M̂) = ln(2)E(X) = ln(2)

θ0
= m0, so it is an unbiased estimator. The estimate yielded by the

above example sample is m̂ = 0.3578, in this case less than the distribution median 0.5776.

Q3. Here are plots of median log likelihood functions for larger sample sizes n:
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Figure 2: n = 25; m̂ = 0.5375 < m0.
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Figure 3: n = 50; m̂ = 0.5939 > m0.
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Figure 4: n = 100; m̂ = 0.5605 < m0.

The graphs have broadly the same shape, the
only significant difference being their extent
along the y-axis, which increases with n. This
is expected as the likelihood function, as in
equation (1), is directly proportional to n and
linear in x (fixing the other variable), and de-
pends on nothing else. By the central limit

theorem,
√
nX−µ

σ
converges in distribution as

n → ∞ to a standard normal distribution; in
particular, it becomes increasingly likely that
a sample will yield a sample mean (and so me-
dian estimate) that is at most a fixed distance
away from the true parameter, and so it is less
likely that there will be variation in the shape
of the graphs.2

1Here and in Q6, P(X = 0) = 0, so the case x = 0 is theoretically negligible and computationally unlikely.
2More precisely, considering 1

n` as a (scaled) function 1
n`(m,x), on a compact subset A ⊂ (0,∞), L : (0,∞)→

C(A), x 7→ 1
n`(·, x) is continuous w.r.t. absolute value on the domain and the uniform norm on the range. Thus,

small changes in x produce uniformly small visible changes in the graph.
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Q4. For λ < θ (a neighbourhood of 0),

MX(λ) =

∫ ∞
0

eλxθe−θxdx = θ

∫ ∞
0

e(λ−θ)xdx =
θ

λ− θ
[
e(λ−θ)x]∞

x=0
=

1

1− λ
θ

X, Y are independent, so MX+Y (λ) = MX(λ)MY (λ) = 1

(1−λ
θ )

2 on the same neighbourhood of 0.

This agrees with the MGF of a Γ(2, θ) random variable, so X + Y ∼ Γ(2, θ), as the distribution of
a random variable is determined by its MGF, if the latter exists.

Q5. The distribution function of a Γ(2, θ) random variable (θ ∈ (0,∞)) takes this form:

F (x) = θ2

∫ x

0

te−θtdt = θ2

([
t

(
−1

θ
e−θt

)]x
t=0

−
∫ x

0

(
−1

θ

)
e−θtdt

)
= θ2

(
−1

θ
xe−θx +

1

θ

[
−1

θ
e−θt

]x
t=0

)
= −θxe−θx −

(
e−θx − 1

)
= 1− (1 + θx) e−θx

F : [0,∞) → [0, 1) is a bijection with no obvious closed-form inverse. Therefore, it may be
more computationally efficient to generate variables from this distribution by generating sums of
two independent Exp(θ) variables. This method is used by the function A.G.

Q6. Given a sample {xi}ni=1 from a Γ(2, θ) distribution, the log likelihood function for the rate
θ, ` (·| {xi}ni=1) : (0,∞)→ R, takes the form:

`(θ) =
n∑
i=1

ln
(
θ2xie

−θxi
)

=
n∑
i=1

(2 ln (θ) + ln(xi)− θxi) = n(2 ln(θ) + ln(x)− θx) (2)

It is smooth on (0,∞), with first and second derivatives:

`′(θ) = n

(
2

θ
− x
)

`′′(θ) = −2n

θ2

Now, `′(θ) = 0 ⇐⇒ θ = 2
x

and `′′
(

2
x

)
= −1

2
nx2 < 0, so 2

x
is the unique preimage of the global

maximum of the function. Thus, θ̂ = 2
x
.

Let θ0 be the true rate of the distribution. The sum of n Γ(2, θ0) random variables Xi is
distributed as Γ(2n, θ0).3 This fact allows the expectation of the estimator, as a random variable
Θ̂, to be calculated:

E(Θ̂) = 2nE
(

1∑
Xi

)
= 2n

∫ ∞
0

θ2n
0

(2n− 1)!
t2n−2e−θ0tdt =

(
1 +

1

2n− 1

)
θ0 (3)

The latter integral is evaluated by comparison with the density of a Γ(2n−1) random variable.
This shows that the estimator is biased (tending to overestimate θ0) but asymptotically unbiased
(i.e. E(Θ̂)→ θ0 as n→∞).

3By a similar argument to Q4.
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Q7. Here are plots of log likelihood functions (of the rate of Γ(2, θ)) for different sample sizes.
The true rate is θ0 = 2.2.
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Figure 5: n = 10; θ̂ = 2.2326 > θ0
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Figure 6: n = 25; θ̂ = 2.5833 > θ0
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Figure 7: n = 50; θ̂ = 2.4676 > θ0

This log likelihood function, given by equation
(2), is again directly proportional to n and de-
pends linearly on x. It also depends, as an
added constant, on ln(x) (once rescaled by di-
viding by n), but this shift doesn’t affect the
shape of the graph. x converges by the central
limit theorem and so the shape of the graph
(once rescaled) converges as the sample size in-
creases.

However, unlike with the exponential median, for any fixed sample size, it is not expected that
the maximum likelihood estimator of the rate will give the true rate; indeed, the expected estimate,
given by equation (3), is always greater than the true value, though the discrepancy tends to 0
as n → ∞. In the case of the samples yielding these example graphs, the biased estimator has
always overestimated the rate. Its expected value, for n = 10, 25, 50, is respectively 2.3158, 2.2449,
2.2222.
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Q8. The following histograms represent samples of size 200 taken from the sampling distribution
of the mean of samples of size n of a Γ(2, 2.1) random variable. As N →∞, these will take on the
shape of the probability density function of the random variable.
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(b) n = 40. Mean: 2.1402.

Figure 8: The sampling distributions of the mean of n samples of Γ(2, 2.1).

By equation (3), the expected means of the n = 10 and n = 40 distributions are respectively
2.2105 and 2.1266. The variances of the distributions converge, by the central limit theorem, to 0
as N →∞. This corresponds with the observations made from the graphs (of individual samples
from the sampling distributions) – the samples have means as stated in the captions and appear
to be more concentrated around the mean for n = 40 than for n = 10, as 10 < 40.4

4Indeed, since large samples are being taken to estimate the expected value of the estimator in this question,
there is less variance in their means between instances of the script Q8 than there is in the 1-sample estimates of
Q7, for the same reason (applying the central limit theorem to the sampling distribution of Θ̂200).
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3 The Normal Distribution

Q9. The function α : [0, 2π)×(0,∞)→ R2\ (µ1, µ2), (φ, v) 7→ (x(φ, v), y(φ, v)) is a bijection (it is
a scaled polar parameterisation). Let α−1 : (x, y) 7→ (φ(x, y), v(x, y)). Then ∀(x, y) ∈ R2\ (µ1, µ2)

v(x, y) = v(x, y) cos(φ(x, y))2 + v(x, y) sin(φ(x, y))2 =
1

σ2

(
(x− µ1)2 + (y − µ2)2)

The partial derivatives of α (identifying 0 with 2π in the φ component) are as follows:

∂(x, y)

∂(φ, v)
=

∣∣∣∣∣ −σ
√
v sin(φ) σ

2
√
v

cos(φ)

σ
√
v cos(φ) σ

2
√
v

sin(φ)

∣∣∣∣∣ =
σ2
√
v

2
√
v

∣∣∣∣ − sin(φ) cos(φ)
cos(φ) sin(φ)

∣∣∣∣ = −σ
2

2

whence (X, Y ) have joint density g : R2 → [0,∞), where ∀(x, y) ∈ R2\ (µ1, µ2),5

g(x, y) = f (φ(x, y), v(x, y))

∣∣∣∣∂(x, y)

∂(φ, v)

∣∣∣∣−1

=
1

2πσ2
e−

1
2
v(x,y) =

(
1√
2πσ

e−
1

2σ2
(x−µ1)2

)(
1√
2πσ

e−
1

2σ2
(y−µ2)2

)
Thus, X ∼ N(µ1, σ

2), Y ∼ N(µ2, σ
2) and X, Y are independent (as the density function factorises).

Q10. Normally-distributed random samples are produced by A.N.
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Figure 9: Normally-distributed random samples with sample size 50,000.

Fixing a sample size n, the sample mean X of n independent N(µ, 1) variables has the distribu-
tion N(µ, 1

n
). Furthermore,

√
n
(
X − µ

)
∼ N(0, 1). Let Φ be the distribution function of N(0, 1)

so that P
(√

n
∣∣X − µ∣∣ ≤ Φ−1(0.9)

)
= 0.8. Then

0.8 = P
(
−Φ−1(0.9) ≤

√
n
(
µ−X

)
≤ Φ−1(0.9)

)
= P

(
X − Φ−1(0.9)√

n
≤ µ ≤ X +

Φ−1(0.9)√
n

)
Thus, the 80% confidence interval given by X is the symmetric interval

IX =

[
X − Φ−1(0.9)√

n
,X +

Φ−1(0.9)√
n

]
5The value of g(µ1, µ2) is inconsequential, as it doesn’t affect any integrals of g.
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Treating it as an interval-valued random variable derived from X, it has the property that
P (µ ∈ IX) = 0.8.

Q11. Taking samples 25 times, it is expected that the 80% confidence interval for the sample
mean Ix will contain the true mean µ 0.8 × 25 = 20 times (and so not contain it 5 times). An
experiment follows, with samples of size n = 100 from the N(0, 1) distribution. The confidence

intervals are denoted [x− c, x+ c], where c = Φ−1(0.9)√
n

.

x x− c x+ c 1 (µ ∈ Ix)
0.1743 0.0461 0.3024 0

-0.0600 -0.1881 0.0682 1
0.1448 0.0167 0.2730 0
0.0477 -0.0804 0.1759 1
0.1431 0.0149 0.2712 0

-0.1023 -0.2305 0.0258 1
0.1565 0.0284 0.2847 0

-0.0327 -0.1609 0.0954 1
0.0018 -0.1264 0.1300 1

-0.0642 -0.1923 0.0640 1
0.0302 -0.0979 0.1584 1

-0.0526 -0.1807 0.0756 1
0.0715 -0.0566 0.1997 1

x x− c x+ c 1 (µ ∈ Ix)
-0.2001 -0.3283 -0.0719 0
0.1268 -0.0013 0.2550 1
0.1031 -0.0250 0.2313 1

-0.1147 -0.2428 0.0135 1
0.1196 -0.0086 0.2478 1

-0.2090 -0.3372 -0.0808 0
0.1699 0.0418 0.2981 0

-0.0897 -0.2179 0.0385 1
-0.0697 -0.1978 0.0585 1
0.0656 -0.0626 0.1937 1
0.0082 -0.1200 0.1363 1
0.0442 -0.0839 0.1724 1

Figure 10: The confidence interval did not contain µ 7 times, in this case.

Q12. For each sample {Xi}ni=1, 1 (µ /∈ IX) ∼ B(1, 0.2). Thus, independently sampling 25 times,
as each indicator 1 (µ ∈ IX) is independent of the others (independence being preserved by func-
tions of random variables), the number of times the confidence interval does not contain µ, denoted
Y , has distribution B(25, 0.2). This depends on the number of samples taken and the confidence
level, but not on the individual sample size nor indeed on the distribution being sampled from.
Therefore, sampling with n = 50 and µ = 4, we have E(Y ) = 5 and indeed Var(Y ) = 4, unchanged
from the case in the previous question. However, there is an advantage to increasing n: the size of

the confidence interval, 2Φ−1(0.9)√
n

, is reduced, so µ can be estimated more precisely. Equivalently,

the same-sized confidence interval gives estimates to a higher level of confidence (than, e.g., 80%).
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4 The χ2 Distribution

Q13. The χ2
d distribution is plotted below with samples of size 100, 250, 500 respectively from

left to right.
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Figure 11: d = 1
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Figure 12: d = 5
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Figure 13: d = 40

As the degrees of freedom of the distribution increase, its mean and median increase (repre-
sented by a rightward shift of the apparent centre of the histograms) and its variance increases
(as each histogram is programmed to have n

10
bins, which increase in width along the x-axis as d

increases). Furthermore, it becomes increasingly symmetric.
This agrees with the theoretical behaviour of the distribution, which, for degree d, has mean

d, variance 2d and skewness
√

8/d.6

6See, for example, http://mathworld.wolfram.com/Chi-SquaredDistribution.html (results (37), (39), (40); access
date: 26/04/2015). Moments can be deduced from the coefficients of the moment generating function of the
distribution.
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A Programs

The programs take the form of a module, A.m, which provides methods for the project, and six
scripts, Q*.m, which use these methods to generate output for each question. These depend on
two auxiliary, unlisted scripts that process output and are based on scripts from the internet:

tabler(L,d,f): Appends the table at global variable T in LATEX-format to the file L.txt with
heading d and formatting f, specified as a cell array of statements in MATLAB fprintf format.

grapher(P): Writes the figure at global variable G in pdf-format to the file P.pdf.

A.1 Documentation

This section describes the purpose of the project’s functions, and the inputs for which they are
designed to give valid output.

A.E(t,m,n,o): t ∈ (0,∞), m, n, o ∈ N. Generates an m× n× o array of Exp(t) random variables.

A.G(t,m,n): t ∈ (0,∞), m, n ∈ N. Generates an m× n matrix of Γ(2, t) random variables.

A.N(mu,s2,m,n): mu ∈ R, s2 ∈ (0,∞), m, n ∈ N. Generates an m× n matrix of N(mu, s2) random
variables.

A.X(d,n): d, n ∈ N. Generates an n-vector of χ2
d random variables.

A.ELM(m,d): m ∈ (0,∞), d ∈
⋃∞
n=1[0,∞)n. Evaluates `(m|d), the median log likelihood function of

the exponential distribution given a sample d.

A.GLT(t,d): t ∈ (0,∞), d ∈
⋃∞
n=1[0,∞)n. Evaluates `(t|d), the rate log likelihood function of

the Gamma distribution of shape 2 given a sample d.

A.2 A

classdef A

methods(Static)

function x = E(t,m,n,o)

x = -log(1-rand(m,n,o))/t;

end

function x = G(t,m,n)

x = sum(A.E(t,m,n,2) ,3);

end

function x = N(mu,s2 ,m,n)

f = 2*pi*rand(m,n); v = -2*log(1-rand(m,n));

x = mu + sqrt(s2)*sqrt(v).*cos(f);

end

function x = X(d,n)

x = A.N(0,1,d,n); x = sum(x.*x,1);

end
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function y = ELM(m,d)

t = log(2)/m;

g = @(x) log(t*exp(-x*t));

y = sum(arrayfun(g,d));

end

function y = GLT(t,d)

g = @(x) log((t^2)*x*exp(-x*t));

y = sum(arrayfun(g,d));

end

end end

A.3 Q2

T = 1.2; M = log(2)/T;

disp(strcat(’m_0=’,num2str(M))) % True median

for n = [6, 25, 50, 100]

disp(strcat(num2str(n),’:’))

x = A.E(T,1,n,1) % Sample

e = log(2)*mean(x) % Estimator

l = @(m) A.ELM(m,x);

G = figure; clf; hold all; grid on; axis on % Graph

fplot(l,[0.1 ,2])

xlabel(’m’); ylabel(’l(m)’); xlim ([0 ,1.6]);

grapher(strcat(’P2-’,num2str(n)))

end

A.4 Q7

T = 2.2;

disp(strcat(’rate=’,num2str(T))) % True rate

for n = [10 ,25 ,50]

x = A.G(T,1,n);

disp(strcat(num2str(n),’:’,num2str (2/ mean(x)))) % Estimator

l = @(t) A.GLT(t,x);

G = figure; clf; hold all; grid on; axis on % Graph

fplot(l,[0.1 ,4])

xlabel(’\theta’); ylabel(’l(\theta)’); xlim ([0 ,4]);

grapher(strcat(’P7-’,num2str(n)))

end
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A.5 Q8

t = 2.1; N = 200;

for n = [10 ,40]

x = A.G(t,n,N);

m = 2./ mean(x);

e = mean(m) % Mean estimator

G = figure; clf; hold all; grid on; axis on % Graph

hist(m ,0.1:0.1:5)

grapher(strcat(’P8-’,num2str(n)))

end

A.6 Q10

for a = [4 ,1;1,4]

b = num2cell ([a’ ,1 ,50000]);

x = A.N(b{:});

G = figure; clf; hold all; grid on; axis on % Graph

hist(x,200)

grapher(strcat(’P10-’,num2str(a(1)),’-’,num2str(a(2))))

end

A.7 Q11

mu = 0; n = 100; m = 25;

c = norminv (0.9 ,0,1)/sqrt(n);

x = A.N(0,1,n,m);

sm = mean(x)’; lb = sm - c;

ub = sm + c; ci = abs(sm-mu) < c;

T = table(sm,lb ,ub,ci) % Table

d = sum(ci == 0) % Times not contained

tabler(’L11’,’’,{’%5.4f’,3,’%1.0f’ ,1})

A.8 Q13

for i = [1,5,40]

for j = [100 ,250 ,500]

x = A.X(i,j);

G = figure; clf; hold all; grid on; axis on % Graph

hist(x,round(j/10)); set(gca ,’fontsize ’ ,20)

grapher(strcat(’P13-’,num2str(i),’-’,num2str(j)))

end

end
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